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Abstract

Satellite images of nighttime lights are commonly used to proxy local economic conditions.
Despite their popularity, there are concerns about how accurately they capture local development
in low-income settings and different scales. We compile a yearly series of comparable nighttime
lights for Africa from 1992 to 2020, considering key factors that affect accuracy and comparability
over time: sensor quality, top coding, blooming, and, importantly, variations in satellite systems
(DMPS and VIIRS) using an ensemble, machine learning, approach. The harmonized luminosity
series outperforms the unadjusted series as a stronger predictor of local development, particularly
over time and at higher spatial resolutions.
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1 Introduction

A considerable literature in economics, political science, and remote sensing employs satellite night-

time lights to proxy development (Donaldson and Storeygard, 2016; Levin et al., 2020).1 The use of

satellite data appears a priori helpful for low and middle-income countries with weak state capacity

and recurrent conflict. Earlier research reveals that luminosity is a valuable proxy for cross-country

GDP (Henderson et al., 2012; Chen and Nordhaus, 2011); hence, researchers use luminosity to

correct for inconsistencies and noise in country-level statistics stemming from challenges measuring

output in economies specializing in agriculture, with a large informal economy, and underfunded

statistical agencies (Pinkovskiy and Sala-i Martin, 2016). Luminosity appears helpful in correcting

inflated output statistics that non-democratic governments often produce (Martinez, 2022) and

quantifying profit shifting by multinationals (Bilicka and Seidel, 2022). Applied research used lu-

minosity to measure regional development, as data unavailability and error-in-variables are more

serious at the local level. Many works use luminosity to proxy development across administrative

units (Hodler and Raschky, 2014; Alesina et al., 2016), historical ethnic homelands (Michalopoulos

and Papaioannou, 2013, 2014), and pixels (Henderson et al., 2018).2

However, there are still open issues regarding how accurately luminosity predicts development.

First, while most studies conduct validation exercises that luminosity correlates with local devel-

opment, there are concerns about the strength of the association. Second, researchers have leeway

on the validation, for example, selecting the development proxy and the spatial unit, which some-

times are large areas and, in other cases, small pixels. Third, while some works use unadjusted

series (e.g., Michalopoulos and Papaioannou, 2013), others adjust for top coding and the tendency

of light to spill to neighboring areas (e.g., Henderson et al., 2018). Fourth, mapping the lower

resolution and more coarse pre-2013 series (DMSP-OLS) with the post-2013 (VIIRS) series is not

straightforward. Most works abstain from dealing with this issue using the pre or post-2013 se-

ries. Consequently, despite the many uses of luminosity in various fields of economics and political

science, there are ambiguities about its ability to capture development in low-income settings, at

which scale, location, and periods.

Recent works paint a somewhat conflicting picture. On the one hand, India-based tabulations

suggest that lights proxy well regional economic conditions in levels and changes (Asher et al.,

2021). On the other hand, studies from Indonesia, China, and South Africa suggest that varia-

tion of GDP does not correlate strongly with lights outside cities, at least for the early period,

1This literature comprises work in Africa (Hjort and Poulsen, 2019; Storeygard, 2016; Michalopoulos and Pa-
paioannou, 2014; Dreher et al., 2019; Henderson et al., 2017), Asia (Harari, 2020; Chodorow-Reich et al., 2020;
Baum-Snow et al., 2017), Europe (Gibson, 2021), North America (Bleakley and Lin, 2012), and worldwide (Ch et al.,
2021; Henderson et al., 2018; Pinkovskiy, 2017; Martinez, 2022).

2A related research stream combines light density with daytime imagery to better proxy local activity (Jean et al.,
2016; Yeh et al., 2020; Khachiyan et al., 2022). However, the daytime data is proprietary, and the methods are
prohibitive for typical economics research.
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1992 − 2013 (Gibson et al., 2021). Besides, Bluhm and McCord (2022) comprehensive validation

of nightlights locally in the US, Spain, Germany, Brazil, and Italy demonstrate a non-constant

lights-GDP elasticity in changes.

Here, we zoom in on Africa, where the output data quality is poor, and there is relatively

limited regional data on economic activity, especially at granular levels. As research has moved

from cross-country designs to meso approaches that exploit variation within-country across regions

(administrative units, ethnic homelands, and pixels), there are applications at spatial units of

various sizes. Our first contribution is to create a standardized pixel-level panel of nightlights over

three decades (1992 − 2020), integrating the pre-2013 (DMSP) and the post-2013 (VIIRS) series

after various adjustments to reduce measurement error. While the VIIRS data series offers various

improvements (Gibson et al., 2021), research often requires the longest possible time-series, for

example, to study the long-run impact of democratic transitions in Africa, China shock, and trade

liberalization. Adjusting and integrating the old luminosity series with the newer ones can allow

exploring a wider range of questions.3

Our second contribution is to validate the newly compiled luminosity series as a proxy for

African local development. We compare the performance of the unadjusted luminosity series to

our adjusted and harmonized one, examining their correlation with education, household wealth,

electrification, and other development measures using 139 georeferenced DHS surveys from 34

African countries and all Mozambican censuses (spanning both the DMSP and the VIIRS period).

Our analysis reveals three main takeaways. First, the new luminosity series correlates strongly

with local development in the cross-section and over time. The correlation is, however, far from

perfect. Second, the correlation is stronger, especially in panel estimation, with the adjusted and

harmonized series, telling of a reduction in measurement error. Third, the luminosity-development

correlation retains significance across gridcells and administrative units of various sizes; in rural

and urban areas; even when exploiting very localized variation.

Structure Section 2 details our ML methodology for correcting and merging the DMSP-OLS

with the VIIRS series. Sections 3, 4, and 5, focus on the cross-sectional and over time association

of luminosity with development across countries, regions/gridcells of various sizes, and Mozambican

administrative units, respectively. Section 6 concludes, discussing avenues for future research.

2 Methods and New Series

This Section presents the data and our approach to compiling a new time series of nighttime lights

across Africa for 1km by 1km pixels from 1992 to 2020. First, we discuss the adjustments in the

3We intend to make the code and data publicly available and update the series annually.
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DMSP series. Second, we present the machine learning (ML) approach that converts and merges

the new VIIRS series to the adjusted DMSP.

2.1 Adjusted DMSP Series

The DMSP data from the Earth Observation Group (EOG) for 1992 − 2013 has three main de-

ficiencies: cross-sensor calibration, top coding, and blooming. As earlier studies have addressed

these issues, we discuss them briefly.

Cross-sensor Accuracy As the DMSP-OLS series comes from six satellites, luminosity readings

vary. Sometimes, values differ even for the same satellite due to the sensor’s (eyes) degradation.

We use the DMSP series from Li et al. (2020), which integrates the cross-sensor correction from Li

and Zhou (2017). Using data from sensors with overlapping or nearby years, these studies estimate

a second-order polynomial to map values across sensors.

Top Coding The DMSP data are 8-bit integers, Digital Numbers (DN), ranging from 0 to 63.

This limits stored information. In addition, as sensors are calibrated to detect clouds, they miss

brighter lights. DN of 63 corresponds to a range of actual radiance. Pixels with DNs in the mid-

50s also suffer from implicit top coding, as they are averages of multiple inputs, which could be

top-coded. A ‘radiance-calibrated’ (RC) vintage of DMSP, which is not top coded, is available for

seven years. Most pixels in Africa are unlit (98.4% in 1992, 97.4% in 2002, and 96.8% in 2012).

Even among lit pixels the share of top-coded ones (DN = 63) is tiny (0.98% in 1992, 1.4% in

2002, and 1.7% in 2012). The share of lit pixels with values close to top-coding (DN≥55) is 2.8%

in 1992, 5.6% in 2002, and 10% in 2012. We correct the series by combining the DMSP with the

RC data with the approach of Bluhm and Krause (2020). First, for each year, we identify pixels

(number Nt) with DN≥ 55 for replacement. Second, we rank the Nt pixels using the RC series

from the nearest year. Third, generate “structural values” from a truncated Pareto distribution,

i.e., f(x) = αLαx−α−1

1−(L/H)α .
4 Fourth, we replace the Nt top coded pixels so that the pixel with the i-th

highest rank is replaced by the i-th highest “structural value”.

Blooming The DMSP data suffer from blooming (also called ‘blurring’ or ‘bleeding’) due to weak

spatial accuracy.5 The sensor records a window where central pixels cover less space on the ground

than pixels along the edges, ‘stretching out’ the edge pixels (Gibson et al., 2021). The sensor

can also be displaced up to 3km. We follow Cao et al. (2019), who model blooming as spatial

4We use the parameter values from Bluhm and Krause (2020): α = 1.5, lower bound threshold L = 55, and upper
bound threshold H = 2000.

5Some works suggested that blooming may be more important close to the sea and lakes, but Gibson et al. (2021)
show that this is not the case. Nevertheless, we allow the blooming correction to differ flexibly in coastal areas and
across broad African regions.
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spillovers and remove them. The background light is identified based on all lit pixels that neighbor

at least one unlit pixel; pseudo-light pixels (PLPs). The method works as follows: First, identify

PLPs, lit pixels (DN > 0) with one of its neighboring pixels dark (DN= 0). Second, for each PLP

take the inverse squared distance weighted sum of light in a surrounding 7× 7 window, excluding

pixels with less light.6 Third, run an OLS regression of the PLP light on the sum of its neighbors’

light: DNp = α + β
∑

q
DNq

d2q,p
. [We estimate the spatial decay separately for broad African regions

(north, west, east, central, south, and coastal), although this does not affect the estimates much.]

Fourth, for lit pixels, remove blooming by subtracting the model predicted lights; replace pixels’

light with DN ′
p = DNp− α̂− β̂

∑
q
DNq

d2q,p
. Fifth, smooth each cell’s value with the mean of it and its

eight nearest neighbors and then set all negative values to zero. The blooming correction increases

the share of unlit pixels, which is already large, as it removes light that spills over from nearby

highly lit pixels. The share of unlit pixels in 1992 rises from 98.4% to 99.1% and in 2012 from

96.8% to 97.9%. However, as shown below, the adjusted series correlates more strongly with local

development despite the higher share of unlit pixels.

2.2 Harmonizing the DMSP and VIIRS Series

We use the VIIRS VNL V2 series (Elvidge et al., 2021). While it does not suffer from top coding,

blooming, and sensor degradation, VIIRS becomes available only after 2013. Besides, VIIRS’ units,

range, variance, and spatial resolution are not comparable to the DMSP. First, VIIRS records 14-bit

DN, allowing for a wider range and more distinct values than DMSP. Second, VIIRS is recorded

at a finer spatial resolution than DMSP (500m vs. 1km at the equator). Third, the quality of the

sensors is (much) better. Consequently, almost all studies rely on one of the two series. We develop

a method to fuse the VIIRS with the DMSP series, creating an uninterrupted panel of comparable

nightlights over three decades. We merge VIIRS to both the unadjusted and the adjusted DMSP

series that account for top coding, sensor degradation, and blooming. Since the VIIRS data does

not suffer from these issues, our preferred series downgrades VIIRS to the adjusted DMSP series.

Our validation exercises below corroborate this choice.

There is a very recent parallel literature to our work that “downgrades” the VIIRS series to

make it comparable to previous data (Li et al., 2020; Nechaev et al., 2021). Li et al. (2020) use a

sigmoid function calibrated in overlapping DMSP-VIIRS years. But, as the authors acknowledge,

the new data are comparable only for high light values, which is particularly problematic for

Africa’s low luminosity. Compared to the remote sensing literature, our innovation is to take a

machine learning (ML) approach agnostic to the functional form of the two series’ mapping. The

concordance of the two series is a problem well-suited to an ML design, which discovers complex

6The 7× 7 window follows the approach of Cao et al. (2019) and works from the assumption that blooming does
not ’stretch out’ from an origin pixel across more than ≈3 adjacent pixels (i.e., ≈3km).
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structures not specified in advance (Mullainathan and Spiess, 2017). In parallel work, Nechaev

et al. (2021) use a Convolutional Neural Network (CNN) to downgrade the VIIRS series. While

their approach is comparable to ours, they only apply it to the ‘unadjusted’ DMSP data, which

suffers from blooming, top-coding, and sensor quality. As shown below, the unadjusted series does

a poorer job of explaining local development.

2.2.1 Method

To implement the downgrading of VIIRS and its merging with the DMSP series, we use an ensem-

ble method, considered as state-of-the-art in machine learning (Sagi and Rokach, 2018).7 Ensem-

ble methods combine different models to improve out-of-sample performance over a single model

(Athey and Imbens, 2019). We use an ‘extremely randomized trees,’ (Geurts et al., 2006), an aver-

aging ensemble method that combines many decision trees. The driving principle behind averaging

methods is to build multiple independent models and then average their predictions. Random

forests combine decision trees, each built from a random sample of observations and features (co-

variates/predictors); the decision trees use the best splits from the respective samples (Breiman,

2001). Extremely randomized trees take an extra step: instead of picking the ‘best’ thresholds from

the sample of observations and features, pick them randomly, as doing so improves accuracy and

computational efficiency (Geurts et al., 2006).

We work with a 30-arc second pixel (roughly 1km at the equator), as this matches the DMSP

resolution and the following features: (i) pixel statistics, mean, median, min, and max values; (ii)

statistics outside the pixel, mean, and variance at windows of varying widths in pixels (3, 4, 7,

9, 11, 13, 17, 21); and (iii) indicators for six broad African regions, North, West, Central, East,

South, and sea off-coast. The decision trees allow for all complex interactions between features.

The extremely randomized tree has a set of (regularization) parameters that must be calibrated.8

We implement a randomized search across parameter values evaluated by cross-fold validation to

avoid misjudgment; we use the ‘scikit learn’ library in python that picks parameters that maximize

the out-of-sample prediction, as measured by the out-of-sample R2.

2.2.2 Performance

The downgrading of VIIRS to the adjusted DMSP performs well both in absolute terms and com-

pared to the recent efforts of Li et al. (2020) and Nechaev et al. (2021). Figure 1 reports the results

7Mullainathan and Spiess (2017) write that ‘while it may be unsurprising that such ensembles perform well on
average... it may be more surprising that they come on top in virtually every prediction competition.’

8The full set of parameters is: n estimators (number of trees), min samples split (the minimum number of ob-
servations required to split an internal node), min samples leaf (the minimum number of samples required at a leaf
node), max features (the number of features to consider when looking for the best split), max depth (the maximum
tree length), and whether bootstrap samples are used when building trees or the full dataset is used for each tree.
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of our method’s out-of-sample performance (we train and calibrate the model in 2012 and evaluate

it using data from 2013) and compares with Li et al. (2020) and Nechaev et al. (2021).

First, the left panels plot the scatters of the predicted values (in the vertical axis) against the

actual DMSP values (in the horizontal axis) for our method (panel a), the Li et al. (2020) sigmoid

function method (panel c), and the Nechaev et al. (2021) convoluted neural network approach

(panel e). Our method’s root mean square error (RMSE) is 0.641, considerably lower than the 3.11

of the approach of Li et al. (2020) and lower than the 0.72 of Nechaev et al. (2021). Our method

performs better at the middle and mainly the lower end of the luminosity distribution, particularly

useful when studying regions in a low-income or (lower) middle-income setting. Despite performing,

on average, significantly better, our method does slightly worse compared to Nechaev et al. (2021)

in very high luminosity areas, which are rare in Africa.

Second, because low-light regions are chief in Africa and many works apply binary transforma-

tion, we also examine performance at the extensive margin. Panels (b), (d), and (f) report “confu-

sion matrices” of lit and unlit pixels with the three methods. The rows correspond to actual adjusted

DMSP values, and the columns to out-of-sample predicted DMSP values for 2013. The top-left

counts pixels classified correctly as unlit, and the bottom-right pixels correctly classified as lit. For

our method, the share of lit pixels correctly classified (recall) is 0.90 [697890/(697890+79415)]; the

share of all predicted as lit pixels correctly classified (precision) is 0.72 [697890/(697890+266227)].

These statistics depend on the distribution of lit and unlit pixels, which is highly skewed. The actual

share of lit pixels is just 2%. Simply classifying all pixels as lit would get a recall score of 100%, but

a precision of just 2%. The figure thus also reports the F1 score, a widely used metric to evaluate

the success of binary classifiers when one class is rare (Lipton et al., 2014). The F1 score takes the

harmonic mean of the recall and precision scores; F1 = 2 ∗ recall ∗ precision/(recall+ precision).

Higher F1, bounded between 0 and 1, indicates a better accuracy. Our method yields an F1 of

0.80, much higher than the 0.18 of the sigmoid approach and slightly better than the 0.74 of the

CNN approach.

The Appendix shows that our merging is plausible, as there are no discontinuities in 2012-2014.

Appendix Figure A1 uncovers a strong co-evolution between the harmonized luminosity series and

the share of the population with electricity in Mozambique, Kenya, the Democratic Republic of

Congo, Ghana, Tanzania, and Nigeria without a jump when moving from DMSP to VIIRS (see

also Henderson et al. (2012)). Appendix Figure A2 also reveals no major swings in the spatial

distribution of the harmonized luminosity series in 2013− 2014 in Ghana.
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3 Cross-Country Patterns

While our focus is on the use of lights in local economic activity, we commence the analysis exam-

ining the cross-country association between nighttime luminosity and GDP, using data from World

Bank’s World Development Indicators Database.9

Cross-sectional Association Figure 2 Panels (a) and (b) illustrate the strong cross-sectional

association between GDP and the sum of the harmonized nighttime lights in 2005 (adjusted DMSP)

and 2015 (downgraded VIIRS to adjusted DMSP). Appendix Table B1 - Panel A explores in more

detail the cross-sectional association. The coefficient is highly significant, showing that luminosity

is a good proxy of output across the 48 African countries. The fit is strong in both periods with

an adjusted R2 exceeding 0.9. The elasticity is stable across periods (around 0.53), and robust to

dropping outliers, excluding island nations, and augmenting the specifications with broad regional

constants.

Within-Country over Time Association We run panel and long-run differences specifications

to examine the dynamic association between nighttime lights and GDP. Figure 2 - Panel (c) illus-

trates the panel association at the yearly frequency, plotting (residuals of) GDP and luminosity

netting out country fixed-effects and year constants. As the noise in GDP and nighttime lights gets

magnified at the yearly frequency, panel (d) gives the panel elasticity using five-year averages of

GDP and luminosity. Panels (e) and (f) plot the association between changes in GDP and the ad-

justed and harmonized series over 1992−2019 and over 1992−2013. Taking long-run differences, the

error-in-variables fall, and the estimates strengthen. The highly significant elasticity hovers around

0.34 and 0.36 (median regression estimates are between 0.31 and 0.33). These estimates are similar

to ones [0.30− 0.33] reported by Henderson et al. (2012) across 188 countries for 1992/3− 2005/6.

4 Local Development

As applied research on growth, long-run development, economic history, and political economy has

moved over the past years from cross-country approaches to designs that exploit spatial variation

within countries (Michalopoulos and Papaioannou, 2018), we explore the potential of luminosity

to capture regional well-being. We use georeferenced Demographic and Health Surveys (DHS) for

our validation, following a considerable body of research (e.g., Young (2012), Lu and Vogl (2022))

Across all tests, we compare the newly compiled adjusted and merged VIIRS-DSMP lights series

with unadjusted ones, as doing so illustrates a part of our contribution.

9We use all available country-years but Equatorial Guinea, which is an outlier (see also Henderson et al. (2012)).
We require that every country is observed in the DMSP and the VIIRS era; imposing this restriction drops Eritrea,
Djibouti, and Somalia. Appendix Tables B2-B3 provide further evidence.
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4.1 Data and Specification

We obtain all geo-referenced Demographic and Health Surveys from Africa. Appendix Table B5

reports the country-survey years, while Appendix Table B6 gives summary statistics. The 34

countries are from all parts of the continent, relatively richer and poorer. Most surveys were

conducted in the 2000s and 2010s, but we also have over a dozen surveys in the 1990s. We extract

the following outcomes: public goods, like access to electricity and availability of a flush or a pit

toilet, and a composite household wealth index based on a principal component aggregation of

household characteristics (like the quality of the household roof and the ownership of assets). We

also look at education using the mean years of schooling of respondents aged 15-39.10 The geo-

referenced DHS gives information across survey clusters (enumeration areas), typically cities, towns,

and villages. We match these points to three spatial units as one of our objectives is to examine the

usefulness of the luminosity series at various resolutions. First, we aggregate the DHS to gridcells of

0.25×0.25 degrees, roughly 27km by 27km at the equator; see Appendix Figure B3. We match the

responses’ cluster to the gridcell where their coordinate falls and then aggregate across all gridcell-

year. Second, we match DHS data to admin-1 (one level below national), for example, Nigerian

states or South African provinces. Third, we aggregate across admin-2 units based on administrative

boundary data from the Global Administrative Areas (GADM, https://gadm.org/).

We associate the development proxies with luminosity running the following specification:

Yg,c,t = βNLg,c,t + γln(area)g + µc(g),t[+δg] + ϵg,c,t (1)

Yg,c,t denotes the average of the socio-economic outcome (schooling, composite wealth index,

access to flush/pit toilet, and electricity) in gridcell (or administrative unit) g in country c, in

a survey conducted in year t. We standardize all outcomes to have a mean zero and a standard

deviation of one to enable comparisons of the coefficients. NLg,c,t is either the log sum of nightlights

plus half of the minimum positive value or an indicator that equals one if the gridcell is lit. The

specifications include country-year fixed effects µc(g),t. The cross-sectional specifications also control

for the logarithm of the gridcell’s/unit’ area, ln(area)g, which is absorbed by the unit (pix, admin-

area) fixed-effects [δg] in the panel estimation.

4.2 Cross-sectional Estimates

Figure 3 panels (a)-(b) plot the cross-sectional estimates with the harmonized and adjusted DMSP-

VIIR series (red diamonds) and the unadjusted ones (blue squares). Two results emerge. First,

10We choose this age range because, in the panel specifications, we want to capture the ‘flow’ of education. We get
similar results using an upper age of 65.
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nightlights are a suitable proxy for local development, as we obtain significant correlations across

all specifications with both the harmonized and adjusted series and the unadjusted ones. The

estimates in panel (b) hover around 0.5−0.6, suggesting that lit areas have a half standard deviation

higher schooling and access to electricity and pit/flush toilets; the coefficient on the wealth index

suggests differences of one standard deviation. The correlation, however, is far from perfect as

the binary luminosity index cannot fully capture the considerable spatial variation in development

(Appendix Figure B4). Second, with all outcomes, we obtainmore robust and less noisy correlations

with the newly compiled, adjusted, and merged VIIRS-DMSP series compared to the unadjusted

ones. Likewise, when we look at the extensive margin of luminosity, all coefficients increase with

the harmonized series, consistent with a measurement error interpretation, as using less noisy

explanatory variables yields less attenuated estimates and a higher R2 (Wooldridge, 2010).

4.3 Panel Estimates

To examine the dynamic correlation between development and luminosity, we augmented the cross-

sectional specification with admin-unit or gridcell-level constants (δg). All panel specifications

reported in panels (c) and (d) of Figure 3 yield positive coefficients. [Appendix Table B8 reports

the estimates for non-standardized measures.] The coefficients with the adjusted series are always

larger than the analogous ones with the unadjusted ones, telling of the reduction in measurement

error that our adjustments to the DMSP series and merging to the downgraded VIIRS achieve.

For example, the estimate on log lights in the specification with years of schooling is around 0.02

when we use the newly compiled series, about double the coefficient with the unadjusted series

near 0.01. Similar results hold when the outcome is the composite wealth index or the share of

households in the gridcell with electricity access. The comparison of the specifications examining

the association between development and the extensive margin of lights with the new and the

unadjusted series in panel (d) yields starker patterns. All specifications with the unadjusted series

yield indistinguishable from zero estimates, while almost all permutations with the adjusted series

yield significant correlations. The harmonized series suggests that mean years of schooling increase,

on average, by 0.05 standard deviations in gridcells turning lit, compared to unlit; this translates

into 0.125 schooling years (Appendix Table B8). When gridcells turn lit with the newly-compiled

series, the Wealth Index and Electricity Access increase by 0.06 standard deviations.

10



4.4 Further Evidence11

4.4.1 Spatial Aggregation

Applied research uses luminosity data across spatial units of various sizes, some coarse (Alesina

et al., 2016 at admin-1 and admin-2 units and linguistic areas), some granular (Henderson et al.,

2018 at small gridcell level; Storeygard, 2016 at city-level). Figure 4 panels (a) and (b) provide

graphical illustrations of the luminosity-wealth elasticity across spatial units of various sizes to

explore the implications of aggregation. The furthest to the left point gives the coefficient from a

specification across small units, 2× 2 gridcells (0.5× 0.5 decimal degrees). As one moves along the

x-axis, the data is aggregated into larger units, with the largest being 12× 12 gridcells.

The cross-sectional estimates (panel a) are highly significant, around 0.18, across all aggregation

levels. All panel estimates (panel b) are more than two standard deviations larger than zero, showing

that luminosity approximates well variation in household assets and public good access. Besides,

the coefficients are fairly stable across aggregation levels, around 0.07. The estimates are almost

always larger with the newly-compiled harmonized luminosity series that fuses the VIIRS into the

adjusted for top-coding, sensor calibration, and blooming DSMP series (red markers) compared to

the merging of VIIRS to the unadjusted DSMP. The “correction” and the associated reduction in

measurement error are more important at the lowest levels of aggregation. As research moves into

more granular analyses, it must use the harmonized series and carefully consider measurement error.

In contrast, aggregating light data to coarser spatial units reduces the impact of measurement error

in the unadjusted lights series, as evidenced by cross-country analyses showing minimal differences

in GDP-luminosity elasticity using adjusted and unadjusted lights series.

4.4.2 Localized Variation

Researchers commonly use identification designs, such as local fixed effects models Wantchekon

et al. (2015)) or spatial regression discontinuity designs Michalopoulos and Papaioannou (2014)),

to advance on causation by comparing proximate areas. We thus assess how well luminosity captures

local development, focusing on estimates within increasingly proximate areas, adding fixed effects

of increasing spatial resolution (in the panel estimates interacted with year constants) to partial-out

localized hard-to-account-for features related to location, ecology, and culture.

Figure 4 panels (c) and (d) plot the luminosity - wealth correlation with fixed effects of various

sizes. Moving along the x-axis, we plot estimates with larger (coarser) fixed effects. The furthest

to the left specification includes fixed-effects of blocks of 2× 2 gridcells (0.5× 0.5 decimal degrees);

the furthest to the right specification includes 12 × 12 gridcell block fixed-effects. The cross-

sectional estimates are quite stable; the coefficients with the harmonized and adjusted series are

11The results, reported below, with the DHS composite wealth index, are similar to the ones with mean years of
schooling and access to clean piped water and electricity. We thus report them in the Appendix Section B.2
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0.17 − 0.19, somewhat larger than with the unadjusted series (about 0.15). The within-gridcell

estimates highlight the improvement the harmonized DMSP-VIIRS series achieves vis a vis more

agnostic approaches. The coefficient is significantly positive and stable. Even when comparing

nearby areas, changes in luminosity approximate changes in household wealth. In contrast, the

coefficients of the unadjusted luminosity series are smaller and, in many permutations, statistically

indistinguishable from zero. As shown in the Appendix Section B.2, the patterns are similar with

schooling and public goods.

4.4.3 Urban and Rural

Another issue with light data regards their accuracy in explaining well-being in urban and rural

areas. Appendix Figure B8 plots the luminosity coefficients for the four development outcomes

separately for urban and rural households, using DHS classification. All cross-sectional estimates

are highly significant, suggesting that nighttime lights proxy well schooling, household wealth,

and public goods access across both urban (higher luminosity) and rural (low luminosity) areas.

Besides, the estimates are similar in the rural and urban samples. The panel specifications yield

somewhat different patterns. First, the coefficients are statistically significant only when using

the newly compiled harmonized and adjusted for top-coding, blooming, and sensor calibration

lights series. Second, the urban sample estimates are consistently larger than the ones in the rural

sample, showing that the development-luminosity nexus is stronger in urban areas, an asymmetry

that echoes the recent findings across India of Asher et al. (2021).

5 Mozambique (Census-based Estimates)

Many studies use luminosity from specific countries to explore various inquiries, such as the geo-

graphic impact of demonetization in India (Chodorow-Reich et al., 2020), landmine clearance in

Mozambique (Chiovelli et al., 2019), and the flattening of the government hierarchy in China (Li

et al., 2016). Recent work in Namibia shows that luminosity approximates better local development,

as reflected in census data, than surveys (I. et al., 2022). We thus examine the association between

the newly compiled luminosity series and local development using all Mozambican Censuses that

allow us to zoom in at high spatial resolution with many observations.

Specification and Sample We estimate linear specifications across Mozambican administra-

tive units linking development to luminosity. We have retrieved, processed, and digitized the full

censuses of 1997, 2007, and 2017. We estimate the following equation:

Yi,t = βLi,t + γaln(area)i + µj(i),t + [δi+]ϵi,t (2)
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Yi,t denotes the average years of schooling of Mozambicans 15-19 years and non-agriculture em-

ployment of 15-24-year-olds in administrative unit i in period t.12 Li,t is either the log sum of

nightlights plus half of the minimum positive value or a lit indicator. µj(i),t denote broader admin-

istrative units j-year fixed effects. The cross-sectional specification also controls for log geographic

area ln(area)i. δi are administrative unit fixed effects that account for geography, location, and

other time-invariant factors in the panel estimation. Appendix Table B9 gives summary statistics

across 1, 126 admin-4 units (localides).

Cross-Sectional Estimates Figure 5 panels (a) and (b) report the cross-sectional estimates with

the two transformations of luminosity. The specifications reveal a strong luminosity-development

correlation, further illustrating the usefulness of luminosity to approximate localized differences in

education and employment in the “modern” sector. Besides, the coefficients with the harmonized

and adjusted series are stronger than the analogous ones with the “unadjusted” light data, showing

the reduction in measurement error from top-coding and blooming. The estimates imply that years

of schooling and employment in the modern sectors are (at least) half a standard deviation higher

in lit as compared to unlit localities, about 0.5 years and 10 percentage points, respectively. The

luminosity-development correlation is also present when we add admin-3 unit fixed effects (postos)

to exploit localized variations across proximate localities. Appendix Tables B10-B11 reports cross-

sectional estimates also across 142 admin-2 areas (distritos), including admin-1 (provinces) fixed

effects and across 403 admin-3 units (postos), including admin-2 fixed effects. Luminosity is a

significant proxy of education and non-agriculture employment across all administrative splits.

As with the DHS analysis, the improvement in estimates from the harmonized and adjusted for

top-coding, blooming, and sensor calibration series is mostly noticeable at finer spatial resolution.

Dynamic Correlations Figure 5 panels (c) and (d) give panel estimates (with admin-4 unit

fixed-effects) that explore the dynamic association between luminosity and development. Within-

locality changes in luminosity correlate significantly with swings in schooling and out-of-agriculture

employment. As shown in Appendix Tables B12-B13, the correlation is strong across all levels of

spatial aggregation (across admin-2 and admin-3 units). Luminosity co-moves with schooling and

modern-sector employment even when we augment the specifications with interactions between

census-year constants and admin-3 unit fixed-effects that allow us to zoom within geographically

proximate areas and account for quite localized unobserved trends. Besides, the panel estimates

for non-agricultural employment are considerably larger with the newly compiled fused VIIRS to

the adjusted DMSP series luminosity series. Appendix Figure B10 illustrates the within-locality

patterns plotting the increase in schooling years for four groups of localities; initially (in 1997)

12Employment status is not available for the 2017 census. We work with young employment and schooling to better
approximate changes in economic conditions in the panel estimation.
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unlit admin-4 units that either stay unlit (by 2007 or 2017) or turn lit and initially lit localities

that either stay lit or turn unlit. The difference in schooling is about half a year when comparing

localities turning lit (from unlit) or staying lit (rather than becoming unlit), even when we compare

nearby localities with the inclusion of admin-3 fixed-effects.

6 Discussion

While satellite nighttime lights have gained widespread popularity in applied research, it is still

unclear when and where the luminosity data is a dependable proxy of economic development. The

debate is especially pertinent in situations involving high-resolution analyses in low development

regions, where a significant portion of pixels are dark. But it is in low-income areas that satellite

imagery are a priori needed, as in such environments there are limited high quality data.

This paper compiles a novel annual series of nighttime light data encompassing all African

countries across roughly one square kilometer pixels. Employing ensemble methods, we standardize

luminosity data from various satellites with sensors of differing resolutions and accuracy. The new

series accounts for various intricacies related to variations in sensor quality, top-coding, blooming

phenomena, and the transition from the DMSP-OLS to the VIIRS satellite systems in 2013.

The second part of our study explores the relationship between luminosity and local development

proxies such as education, household wealth, sectoral employment, and access to public services.

We draw upon geo-referenced survey data from 34 African countries and full-census data from

Mozambique. By harnessing both cross-sectional and temporal variation, we show that the newly

harmonized luminosity series effectively encapsulates local development (dynamics). This holds true

even at highly granular levels, where the challenge of excess-zero observations is pronounced. The

adjusted and harmonized luminosity series correlate much stronger with all development proxies,

even more so in changes and at granular levels, telling of the reduction in measurement error that the

newly compiled series achieves. We view our work as offering insights into the ongoing discourse

concerning the reliability and utility of satellite nighttime light data in economic development

in regions grappling with data limitations. Besides, as more satellite data become available to

researchers, future research can blend the newly compiled nighttime lights series with other granular

data, such as daytime economic activity (traffic) and imagery of structures to provide high-quality

mappings of well-being in low-income settings.
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Figure 1: Mapping Nighttime Lights. VIIRS and DMSP in 2013

Extremely Randomized Trees (Ensemble Method)
(a) Scatter Ensemble Method (b) Confusion Matrix Ensemble Method

Sigmoid Function Approach Li et al. (2020)
(c) Scatter Sigmoid ‘DMSP-like’ (d) Confusion Matrix Sigmoid ‘DMSP-like’

Convolutional Neural Network Approach Nechaev et al. (2021)
(e) Scatter Neural Network ‘DVNL’ (f) Confusion Matrix Neural Network ‘DVNL’

This figure gives illustrations of the pixel-level mapping of luminosity in 2013, when both the VIIRS and the

DSMP series are available. Panels (a)-(b) report out-of-sample estimates with our extremely randomized trees,

ensemble, method. Panels (c)-(b) give estimates with the sigmoid function of Li et al. (2020) that yields ‘DMSP-like’

downgraded VIIRS series. Panels (e) and (f) give the tabulation of the convolutional neural network method of

Nechaev et al. (2021), ‘DVNL’. Panels (b), (d), and (f) give confusion matrices looking at the extensive margin of

luminosity in 2013.
19



Figure 2: GDP-Luminosity Elasticity. Country-level Estimates

(a) Cross-sectional - log GDP 2005 (b) Cross-sectional - log GDP 2015

(c) Panel Estimates - Annual (d) Panel Estimates - 5-year

(e) Long-Differences - ∆ 1992-2019 (f) Long-Differences - ∆ 1992-2013

Panels (a) and (b) plot the cross-country association between the log of GDP and the log of nighttime lights (lu-

minosity) across African countries in 2005 (DMSP period) and in 2015 (VIIRS period), alongside the LS regression

line (solid line) and the median regression line (dashed). Panels (c) and (d) plot the panel association between log

GDP and the log nighttime lights (luminosity) across African countries and years during the period 1992-2019. Panel

(c) uses all observations; panel (d) uses five-year average values. The panels plot the residuals of log GDP and log

luminosity on country fixed-effects and year fixed-effects. Blue dots indicate country-year residuals during 1992-2012

(DMSP period) and the red dots indicate residuals during 2013-2019 (VIIRS period). The figure also gives the LS and

median regression (dashed) lines and associated standard errors during the DMSP period (blue) and the VIIRS period

(red). Panels (e) and (f) plot the long-difference association between log GDP and log luminosity over 2019-1992 and

2013-1992, respectively. All specifications use the (logarithm of the) newly compiled luminosity series harmonized

VIIRS-DMSP after adjusting the DMSP data for top coding, sensor calibration, and blooming. Countries in panels

(a), (b), (e), and (f) are colored according to their broad African region (East, West, North, Central, and Southern).

20



Figure 3: Local Development-Luminosity Correlation. DHS Analysis

(a) Cross-sectional Estimates - Log Nightlights (b) Cross-sectional Estimates - Lit Indicator

(c) Panel Estimates - Log Nightlights (d) Panel Estimates - Lit Indicator

The figure plots coefficients from regressions associating proxies of development from the Demographic and Health

Surveys (DHS) on night-time lights (luminosity). Panels (a) and (c) use log luminosity; panels (b) and (d) use an

indicator that equals one when the gridcell is lit and zero otherwise. Panels (a) and (b) control for country-survey-

year fixed effects and log cell area. Panels (c) and (d) also include grid-cell fixed effects. All outcome variables, mean

years of schooling of the population aged 15-39, a composite wealth index, and access to piped water and electricity

are standardized to have a mean of zero and a standard deviation of one. The bars give 95% confidence intervals

based on standard errors clustered at the grid-cell level.
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Figure 4: Household Wealth-Luminosity Correlation. Further Evidence

(a) Cross-sectional, Varying Spatial Unit Size (b) Panel Estimates, Varying Spatial Unit size

(c) Cross-sectional, Varying Fixed-Effects Size (d) Panel Estimates, Varying Fixed-Effects Size

The figure plots coefficients from regressions associating the DHS Composite Wealth Index on Log Luminosity. Panels

(a) and (c) give cross-sectional estimates with country-survey year constants, controlling also for the gridcell’s log

land area. Panels (b) and (d) give panel estimates that, besides the country-year constants, also include gridcell fixed

effects. Panels (a)-(b) plot coefficients of log luminosity varying the (gridcell) size unit of the empirical analysis. Panel

(c) plots cross-sectional coefficients of log luminosity holding gridcell size fixed and augmenting the specification with

block fixed effects of increasing size. Panel (d) plots panel coefficients of log luminosity augmenting the specification

with interactions between country-survey-year constants with block fixed effects of increasing sizes. Red markers

denote estimates using the harmonized VIIRS-DMSP luminosity series, adjusting the DMSP for top coding, sensor

calibration, and blooming. Blue markers denote estimates using the unadjusted merged VIIRS-DMSP luminosity

series. The bars denote 95% confidence intervals, based on standard errors clustered at the grid-cell level for panels

(c) and (d) and at the spatial unit level for panels (a) and (b).
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Figure 5: Luminosity and Local Development. Mozambique Census Analysis

(a) Log NL (cross-section) (b) Lit/Unlit (cross-section)

(c) Log NL (panel) (d) Lit/Unlit (panel)

The figure plots coefficients from regressions associating mean years of schooling of individuals aged 15-39 and

employment outside agriculture (in services, manufacturing, and mining) with night-time lights luminosity across

Mozambican localities, level-4 administrative units. Panels (a) and (c) use the natural logarithm of nightlights, adding

a small number. Panels (c) and (d) employ a luminosity indicator variable that equals one if the administrative

unit is lit and zero otherwise. Schooling years are computed for all three Mozambican censuses (1997, 2007, and

2017). The share of non-agricultural employment is calculated using the 1997 and 2007 censuses. Panels (a) and

(b) give cross-sectional estimates. Solid red diamonds and solid blue squares condition on the log admin area and

year constants. The hollow circle/square also conditions on interactions between year constants and admin-3 fixed

effects. Panels (c) and (d) give panel estimates with locality (admin-4) fixed-effects and year constants. The hollow

circle/square specifications also condition on interactions between year constants and admin-3 fixed effects. The two

outcome variables are standardized to have a mean of zero and a standard deviation of one. The bars represent 95%

confidence intervals, and standard errors are clustered at the admin-3 level.
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A Data and Methodology

Appendix Figure A1 demonstrates the significant within-country over-time correlation between

the newly-compiled harmonized luminosity series, based on the downgrading and merging of the

VIIRS series to the adjusted for senor quality, top-coding, and blooming DMSP series. The figure

plots the harmonized nighttime light data alongside the share of the population with electricity in

Mozambique, Kenya, the Democratic Republic of Congo, Ghana, Tanzania, and Nigeria using data

from the World Bank’s Development Indicators Database. Two results emerge. First, luminosity

correlates with electricity access in all countries. Second, there was no major change in luminosity

from 2012 to 2014, when we switched from the DMSP to the VIIRS satellite system.

Appendix Figure A2 plots the spatial distribution of the newly compiled luminosity series

harmonized across VIIRS and DMSP in Ghana in 2012− 2015. There are no major swings in the

harmonized and adjusted VIIRS-DSMP luminosity series in 2012− 2014, when we switch from the

DMSP to the VIIRS satellite system.
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Figure A1: Electricity Access and Harmonized Luminosity Series across African Countries

(a) Mozambique (b) Kenya

(c) Democratic Republic of Congo (d) Ghana

(e) Tanzania (f) Nigeria

The figure plots trends in Electricity Access (as a share of the total population) and the sum of the harmonized

and adjusted VIIRS-DSMP luminosity series (in thousands of DNs) across six African countries. Data on electricity

access come from World Bank’s World Development Indicators Database.
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Figure A2: Spatial Distribution of Economic Activity, Ghana 2012-2015

Harmonized Nighttime Lights Series
(a) 2012 (DMSP) (b) 2013 (DMSP)

(c) 2014 (VIIRS) (d) 2015 (VIIRS)

The figure plots the distribution of the harmonized across satellite systems (VIIRS and DMSP) and adjusted for

blooming, sensor quality, and top-coding nighttime lights series in Ghana over 2012− 2015.
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B Supplementary Evidence

B.1 Luminosity - GDP Elasticity

Appendix Tables B1-B3 report cross-country regression estimates exploring the correlation between

GDP (Gross Domestic Product) and the newly compiled luminosity series that fuse the VIIRS data

(2013−2020) to the DMSP data (1992−2013). The estimates, therefore, complement the (graphical)

analysis of the cross-country GDP-luminosity elasticity in Section 3 of the main paper. Columns (1)-

(3) give the estimates when we use the harmonized and adjusted for top-coding, sensor calibration,

and blooming/bleeding VIIRS-DSMP luminosity series. Columns (4)-(6) give, for comparability,

estimates using the luminosity series that fuses VIIRS to the DMSP series without adjusting for

blooming and top-coding.

Cross-sectional Patterns Appendix Table B1 - Panel A reports pooled across years cross-

sectional regression estimates of the following form:

lnGDP c,t = β lnNLc,t + γa ln(area)c + γp ln popc,t + µt + ϵc,t (3)

ln(GDP )c,t denotes the logarithm of current GDP (in PPP terms) of country c in year t;

ln(NL)c,t is the log sum of the merged DMSP-VIIRS nightlights; ln(pop)c,t is the log of population

while ln(area)c denotes log land area. All specifications include year constants, µt, that capture

the increase in development and luminosity over time. Column (1) gives the lights-GDP elasticity

across the entire period, 1992 − 2019; columns (2) and (3) look at the periods where only DMSP

and only VIIRS are available, respectively. The luminosity GDP elasticity is about 0.53; the

coefficient is highly significant, showing that luminosity is a good proxy of output across the 48

African countries. The fit is strong with an adjusted R2 around 0.93. As shown in Appendix Table

B2, the GDP-luminosity elasticity is stable when we exclude island nations (Comoros, Equatorial

Guinea, Mauritius, Mayotte, Reunion, Sao Tome and Principe, and Seychelles) and augment the

specifications with broad regional constants (southern, central, western, eastern, and northern

Africa). As shown in columns (4)-(6) of Tables B1-B2, the lights-GDP elasticity of the merged

series adjusting for the deficiencies of DMSP is somewhat smaller as compared to the unadjusted

DMSP data (about 0.62), though the fit is similarly strong.

Panel Estimates Appendix Table B1 - Panel B examines the dynamic association between

nighttime lights and GDP. To do so, we augment the cross-sectional specification with country-

fixed effects (δc). The regression equation reads:
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lnGDPc,t = β lnNLc,t + µt + δc + ϵc,t (4)

The regression analysis, therefore, complements the graphical illustrations in Figure 2 panels (c)-

(d) in the main paper. GDP-luminosity elasticity with the newly compiled harmonized luminosity

series that fuses the higher quality and more granular VIIRS series to the DMSP series adjusted

for top-coding, blooming, and sensor quality in column (1)-(3) hovers around 0.21 − 0.26. The

elasticity is quite stable when we drop island nations or interact the year constants with broad

African region fixed effects to account for regional trends (Appendix Table B3). When we use the

merged VIIRS to the unadjusted DMSP (in (4)-(6)), we obtain again a highly significant elasticity,

which is somewhat higher (around 0.26− 0.31).

Long-Run Differences Appendix Table B1 - Panel C plots the correlation between long-run

changes in GDP and night-time lights in long differences. Taking the long-run differences (over 2019-

1992 and 2013-1992) reduces noise in both GDP and nighttime lights, which is likely considerable

in the annual frequency. The specification reads.

∆ lnGDPc = β∆ lnNLc + δ∆ lnPopc + [µr] + ϵc (5)

where ∆ln(GDP ) is the change in log GDP, ∆ln(NL)c the change in log nightlights, ∆ln(Pop)c

the change in log population, and µr(c) are broad region r constants. Consistent with the graphical

illustrations in Figure 2, panels (e)-(f), the elasticity hovers around 0.3 (cols 1-3), close to the ones

reported by Henderson et al. (2012) across more than 170 countries for 1992/3−2005/6 [0.30−0.33.]

The median regression estimates, reported in Appendix Table B4, are quite similar (around 0.3).
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Table B1: GDP - Luminosity Elasticity. Cross-Country Estimates

Sensor, Blooming, & Topcode Fixes Sensor Calibration Only

(1) (2) (3) (4) (5) (6)
ln(GDP) ln(GDP) ln(GDP) ln(GDP) ln(GDP) ln(GDP)

Panel A: Cross-sectional estimates

ln(NL) 0.530∗∗∗ 0.530∗∗∗ 0.536∗∗∗ 0.616∗∗∗ 0.618∗∗∗ 0.617∗∗∗

(0.0388) (0.0406) (0.0382) (0.0311) (0.0316) (0.0389)

ln(area) -0.0147 0.00359 -0.0834∗ -0.00648 0.0119 -0.0744
(0.0449) (0.0459) (0.0491) (0.0420) (0.0418) (0.0494)

ln(Pop.) 0.402∗∗∗ 0.377∗∗∗ 0.485∗∗∗ 0.359∗∗∗ 0.337∗∗∗ 0.436∗∗∗

(0.0699) (0.0722) (0.0716) (0.0653) (0.0671) (0.0695)

Sample Years 1992-2019 1992-2013 2014-2019 1992-2019 1992-2013 2014-2019
Cntry-yrs 1320 1032 288 1320 1032 288
Countries 48 48 48 48 48 48
R2 0.926 0.922 0.933 0.936 0.934 0.935

Panel B: Panel Estimates

ln(NL) 0.216∗∗∗ 0.219∗∗∗ 0.167∗∗∗ 0.270∗∗∗ 0.270∗∗∗ 0.202∗∗∗

(0.0442) (0.0488) (0.0556) (0.0546) (0.0555) (0.0677)

ln(Pop.) 0.590∗∗∗ 0.688∗∗∗ 0.841 0.553∗∗ 0.654∗∗ 0.800
(0.215) (0.246) (0.524) (0.213) (0.244) (0.540)

Sample Years 1992-2019 1992-2013 2014-2019 1992-2019 1992-2013 2014-2019
Cntry-yrs 1320 1032 288 1320 1032 288
Countries 48 48 48 48 48 48
R2 0.993 0.995 0.999 0.993 0.995 0.999
within R2 0.283 0.280 0.159 0.300 0.286 0.164

Panel C: Long-difference Estimates

∆ ln(NL) 0.297∗∗∗ 0.323∗∗∗ 0.232∗∗∗ 0.348∗∗∗ 0.364∗∗∗ 0.254∗∗∗

(0.0812) (0.0606) (0.0818) (0.101) (0.0911) (0.0868)

∆ ln(Pop.) 0.392 0.461∗ 0.252 0.355 0.428 0.281
(0.272) (0.266) (0.448) (0.318) (0.359) (0.461)

Sample Years 1992-2019 1992-2013 2014-2019 1992-2019 1992-2013 2014-2019
Countries 45 45 45 45 45 45
R2 0.460 0.486 0.403 0.445 0.410 0.412

The table reports OLS regressions associating the logarithm of national GDP (Gross Domestic Product) in current
PPP USD on the logarithm of the sum of nighttime lights (luminosity) across African countries. Panel A gives
cross-sectional estimates, including year constants and log country land area. Panel B gives panel estimates with
country fixed effects and year fixed effects. Panel C reports cross-sectional long differences specifications. Columns
(1)-(3) use the newly compiled nighttime lights series that fuses the downgraded VIIRS data into the DMSP data
after adjusting the latter for cross-sensor calibration, top-coding, and blooming with the extremely randomized
forest method detailed in Section 2. Columns (4)-(6) use the merged VIIRS-DMSP series without adjusting the
latter for top-coding and blooming-bleeding. Columns (1) and (4) give estimates across the entire period,
1992-2019; columns (2) and (5) give estimates over the DMSP satellite system period, 1992-2013, and columns (3)
and (6) give estimates in the VIIRS period, 2014-2019. Heteroskedasticity-adjusted standard errors clustered at the
country level are given in parentheses. ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Table B2: GDP - Luminosity Elasticity. Sensitivity. Cross-Country Cross-Sectional Estimates

Sensor, Blooming, & Topcode Fixes Sensor Calibration Only

(1) (2) (3) (4) (5) (6)
ln(GDP) ln(GDP) ln(GDP) ln(GDP) ln(GDP) ln(GDP)

Panel A: All African countries, adding Region FEs

ln(NL) 0.604∗∗∗ 0.605∗∗∗ 0.619∗∗∗ 0.732∗∗∗ 0.737∗∗∗ 0.729∗∗∗

(0.0708) (0.0732) (0.0665) (0.0508) (0.0490) (0.0637)

Sample Years 1992-2019 1992-2013 2014-2019 1992-2019 1992-2013 2014-2019
Cntry-yrs 1320 1032 288 1320 1032 288
Countries 48 48 48 48 48 48
R2 0.945 0.943 0.951 0.958 0.958 0.956

Panel B: All African countries, adding Region FEs and Island Dummy

ln(NL) 0.587∗∗∗ 0.590∗∗∗ 0.597∗∗∗ 0.734∗∗∗ 0.748∗∗∗ 0.707∗∗∗

(0.0759) (0.0792) (0.0679) (0.0634) (0.0614) (0.0676)

Sample Years 1992-2019 1992-2013 2014-2019 1992-2019 1992-2013 2014-2019
Cntry-yrs 1320 1032 288 1320 1032 288
Countries 48 48 48 48 48 48
R2 0.947 0.945 0.954 0.958 0.958 0.957

Panel C: Dropping island nations

ln(NL) 0.542∗∗∗ 0.546∗∗∗ 0.534∗∗∗ 0.601∗∗∗ 0.602∗∗∗ 0.600∗∗∗

(0.0283) (0.0312) (0.0266) (0.0327) (0.0355) (0.0309)

Sample Years 1992-2019 1992-2013 2014-2019 1992-2019 1992-2013 2014-2019
Cntry-yrs 1217 953 264 1217 953 264
Countries 44 44 44 44 44 44
R2 0.928 0.922 0.939 0.931 0.926 0.939

The table reports cross-sectional OLS regressions associating the logarithm of national GDP (Gross Domestic
Product) in current PPP USD on the logarithm of the sum of nighttime lights (luminosity) across African countries.
Panel A gives cross-sectional estimates, including year constants, broad African region (North, South, Central, East,
and West) constants, and log country land area. Panel B also controls for an indicator variable for island nations
(Comoros, Mauritius, Mayotte, Reunion, Sao Tome and Principe, and Seychelles), while panel C excludes island
nations. Columns (1)-(3) use the newly compiled nighttime lights series that fuses the downgraded VIIRS data into
the DMSP data after adjusting the latter for cross-sensor calibration, top-coding, and blooming with the extremely
randomized forest method detailed in Section 2. Columns (4)-(6) use the merged VIIRS-DMSP series without
adjusting the latter for top-coding and blooming-bleeding. Columns (1) and (4) give estimates across the entire
period, 1992-2019; columns (2) and (5) give estimates over the DMSP satellite system period, 1992-2013, and
columns (3) and (6) give estimates in the VIIRS period, 2014-2019. Heteroskedasticity-adjusted standard errors
clustered at the country level are given in parentheses. ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Table B3: GDP - Luminosity Elasticity. Sensitivity. Panel Estimates

Sensor, Blooming, & Topcode Fixes Sensor Calibration Only

(1) (2) (3) (4) (5) (6)
ln(GDP) ln(GDP) ln(GDP) ln(GDP) ln(GDP) ln(GDP)

Panel A: All African countries

ln(NL) 0.216∗∗∗ 0.219∗∗∗ 0.167∗∗∗ 0.270∗∗∗ 0.270∗∗∗ 0.202∗∗∗

(0.0442) (0.0488) (0.0556) (0.0546) (0.0555) (0.0677)

ln(Pop.) 0.590∗∗∗ 0.688∗∗∗ 0.841 0.553∗∗ 0.654∗∗ 0.800
(0.215) (0.246) (0.524) (0.213) (0.244) (0.540)

Sample Years 1992-2019 1992-2013 2014-2019 1992-2019 1992-2013 2014-2019
Cntry-yrs 1320 1032 288 1320 1032 288
Countries 48 48 48 48 48 48
R2 0.993 0.995 0.999 0.993 0.995 0.999
within R2 0.283 0.280 0.159 0.300 0.286 0.164

Panel B: exclude island nations

ln(NL) 0.239∗∗∗ 0.243∗∗∗ 0.215∗∗∗ 0.322∗∗∗ 0.298∗∗∗ 0.275∗∗∗

(0.0466) (0.0500) (0.0683) (0.0502) (0.0562) (0.0816)

ln(Pop.) 0.721∗∗∗ 0.763∗∗∗ 1.188∗∗ 0.668∗∗∗ 0.753∗∗∗ 1.179∗∗

(0.218) (0.262) (0.563) (0.197) (0.253) (0.555)

Sample Years 1992-2019 1992-2013 2014-2019 1992-2019 1992-2013 2014-2019
Cntry-yrs 1217 953 264 1217 953 264
Countries 44 44 44 44 44 44
R2 0.992 0.994 0.998 0.992 0.994 0.998
within R2 0.320 0.309 0.211 0.354 0.318 0.228

Panel C: region-year FEs and exclude islands

ln(NL) 0.261∗∗∗ 0.226∗∗∗ 0.171∗∗ 0.315∗∗∗ 0.265∗∗∗ 0.252∗∗∗

(0.0449) (0.0490) (0.0682) (0.0522) (0.0568) (0.0882)

ln(Pop.) 0.995∗∗∗ 1.478∗∗∗ 0.714 1.065∗∗∗ 1.532∗∗∗ 0.876
(0.266) (0.360) (0.864) (0.249) (0.350) (0.773)

Sample Years 1992-2019 1992-2013 2014-2019 1992-2019 1992-2013 2014-2019
Cntry-yrs 1217 953 264 1217 953 264
Countries 44 44 44 44 44 44
R2 0.993 0.995 0.999 0.994 0.995 0.999
within R2 0.373 0.393 0.094 0.386 0.396 0.123

The table reports OLS panel regressions associating the logarithm of national GDP (Gross Domestic Product) in
current PPP USD on the logarithm of the sum of nighttime lights (luminosity) across African countries. Panel A
gives cross-sectional estimates, including year constants and log country land area. All specifications include
country fixed effects and and year fixed effects. The specification in Panel C also include broad African region
specific year fixed effects. Panel B drops from the estimation island nations (Comoros, Equatorial Guinea,
Mauritius, Mayotte, Reunion, Sao Tome and Principe, and Seychelles). Columns (1)-(3) use the newly compiled
nighttime lights series that fuses the downgraded VIIRS data into the DMSP data after adjusting the latter for
cross-sensor calibration, top-coding, and blooming with the extremely randomized forest method detailed in Section
2. Columns (4)-(6) use the merged VIIRS-DMSP series without adjusting the latter for top-coding and
blooming-bleeding. Columns (1) and (4) give estimates across the entire period, 1992-2019; columns (2) and (5)
give estimates over the DMSP satellite system period, 1992-2013, and columns (3) and (6) give estimates in the
VIIRS period, 2014-2019. Heteroskedasticity-adjusted standard errors clustered at the country level are given in
parentheses. ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Table B4: National GDP Long Differences Estimates

1992/93-2018/19 1992-2013

(1) (2) (3) (4)
DMSP+-VIIRS DMSP-DMSP DMSP+-DMSP+ DMSP+-VIIRS

Panel A: All African countries. OLS

∆ ln(NL) 0.297∗∗∗ 0.364∗∗∗ 0.323∗∗∗ 0.286∗∗∗

(0.0812) (0.0911) (0.0606) (0.0620)

∆ ln(Pop.) 0.392 0.428 0.461∗ 0.419
(0.272) (0.359) (0.266) (0.299)

Countries 45 45 45 45
R2 0.375 0.317 0.405 0.371

Panel D: All African countries (median regression)

∆ ln(NL) 0.209∗∗∗ 0.310∗∗ 0.279∗∗∗ 0.327∗∗∗

(0.0707) (0.116) (0.0774) (0.0605)

∆ ln(Pop.) 0.369 0.615 0.800∗∗ 0.261
(0.288) (0.367) (0.300) (0.313)

Countries 45 45 45 45
pseudo-R2 0.277 0.208 0.270 0.247

The table presents regressions associating changes in the logarithm of national GDP (Gross Domestic Product) in
current PPP USD on changes in the logarithm of the sum of nighttime lights (luminosity) across African countries.
Panel A reports OLS estimates, and panel B median regressions estimates. Column (1) gives estimates from the
long difference over the entire period (1992-2019) specification, while columns (2)-(4) take the difference over the
DSMP period (1992-2013). Column (2) uses the DMSP nighttime light data without adjusting for top-coding and
blooming. Column (3) uses the adjusted for top-coding, blooming, and sensor calibration DSMP series (denoted
DMSP+), and Column (4) uses DMSP+ for the base period (1992) and downgraded VIIRS for the end period
(2013). All specifications control for changes in countries’ log populations and for broad African region constants
(Northern, Central, Western, Eastern, and Southern). Standard errors robust to heteroskedacticity are reported in
parentheses. ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
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B.2 DHS Analysis

This Appendix Section complements the regional analysis linking development outcomes from the

Demographic and Health Surveys with the newly compiled harmonized VIIRS-DSMP luminosity

series in section 4 of the main paper.

Data Aggregation Appendix Figure B3 illustrates the aggregation of the DHS data to gridcells

of 0.25 × 0.25 degrees, roughly 27km by 27km at the equator, zooming into central Mozambique.

Circles report DHS enumeration areas or clusters, typically (large) villages, towns, and cities. The

map also displays gridcells (black lines) to which we aggregate the underlying DHS data.

The choice of gridcell size (0.25 × 0.25 degrees) is a product of DHS displacement. The DHS

cluster GPS points are displaced by up to 10km in order to maintain anonymity. So by choosing

gridcells that are 27km wide and tall we ensure that any DHS cluster located at the center of a

gridcell will be assigned to that gridcell even after displacement. This is especially important when

building the panel data, since gridcells that are too small will not have repeat observations due to

random DHS displacement. Of course, even with our choice of gridcell size, it is always possible

that we ‘miss’ DHS clusters that repeat over time but are displaced to adjacent gridcells.

Sample Appendix Table B5 gives the survey years for all counties in the DHS analysis. The 34

countries come from all parts of Africa; some are landlocked (e.g., Burkina Faso, Central African

Republic, Burundi), some coastal (e.g., Mozambique, Sierra Leone), and a few are island nations

(Madagascar, Comoros). The sample spans relatively richer and poorer countries and includes

former British, French, Portuguese, and Belgian colonies.

Summary Statistics Appendix Table B6 gives summary statistics for the four outcomes from

the DHS (years of schooling, composite wealth index, access to flush or pit toilet, and access to

electricity); the luminosity series (with and without the adjustments in the DMSP for top-coding

and blooming), and area.

Preliminary Cross-Sectional Patterns Appendix Figure B4 illustrates the significant, al-

though far from perfect, cross-sectional association between luminosity and the four proxies of

local development. The four panels plot the histogram of mean years of schooling, the composite

wealth index, access to electricity, and availability of flush or pit toilets for lit and unlit small grid-

cells, netting out country-year fixed effects and conditioning on log gridcell area. The histogram

for lit gridcells (red vertical bars) is evidently to the right of the analogous one for unlit gridcells

(blue bars). The two distributions are different for all development outcomes, especially with ed-

ucation and household wealth. Nonetheless, there is also overlap, as the binary transformation of
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luminosity cannot fully capture the wide spatial variation in well-being within African countries.

Baseline Regression Analysis Appendix Tables B7 and B8 report cross-sectional and panel

estimates linking the four DHS outcome measures (education, composite wealth index, access to

electricity, and pit/flush toilet) to log luminosity and the lit indicator. In these tables, we do not

standardize the dependent variables (as we do in the graphical illustrations in the main paper). In

both tables, panels A and C report estimates with the newly compiled, adjusted for top-coding,

blooming, and sensor quality DMSP series merged to the downgraded VIIRS. For comparability,

panels B and D give the results with the merged VIIRS-DMSP series without adjusting the pre-

2013 DMSP series for top-coding and blooming. The two tables, therefore, report the regression

analogs to the coefficients reported in Figure 3. The cross-sectional specifications in Panel C of

Appendix Table B7 suggest a significant increase of 1 point (one standard deviation) in the DHS

standardized composite wealth index and about 1.7 more schooling years between lit and unlit areas.

The panel estimates, while yielding statistically significant correlations, imply smaller effects. The

results in panel C of Appendix Table B8 imply an increase of 0.124 years of schooling and 0.06 in

the composite wealth index for administrative units turning from unlit to lit.

Further Evidence A. Varying Spatial Unit Appendix Figures B5, B6, and B7 panels (a)

and (b) explore the association between luminosity and education, access to electrification, and to

flush/pit toilet varying the size of the spatial unit. The results, therefore, complement the analysis

in Figure 4 - Panels (a)-(b), in the main paper with the composite wealth index. The patterns

with the three development proxies are similar to the ones with the DHS wealth index, based on

household assets. First, cross-sectionally, differences in education, access to electricity and flush and

pit toilet correlate with log luminosity across both small, medium, and larger areas. Besides, the

coefficients are similar. Second, changes in log luminosity within gridcells over time correlate with

changes in the three development proxies, although the dynamic correlations are weaker and more

noisy. Third, the use of the harmonized and adjusted merged VIIRS-DSMP data yield stronger

and with smaller standard errors correlations, especially in the panel specifications.

Further Evidence B. Varying Localized Variation Panels (c)-(d) of Appendix Figures B5,

B6, and B7 report coefficients on log luminosity with education, access to electrification, and to

flush/pit toilet, varying the localized variation with fixed-effects of varying coarseness. These spec-

ifications are, thus, similar to the ones in panels (c) and (d) of Figure 4 the composite wealth index

as the outcome variable. The qualitative takeaways are mostly similar as with the composite wealth

index. Notably, the luminosity years of schooling correlation turns significant only when adding

mid-size fixed effects, of blocks 8× 8 cells or larger. Besides, the luminosity access to electrification

correlation is highly significant with the newly harmonized series, even when exploiting very gran-
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ular variability with fine fixed-effects, illustrating again the reduction in measurement error from

our ensemble method that fuses a downgraded vintage of VIIRS into the DMSP after adjusting

them for top-coding, blooming, and sensor calibration (see Section 2).

Further Evidence C. Rural-Urban Appendix Figure B8 plots the coefficients on luminosity

distinguishing across DHS respondents in rural and urban households (using the DHS classifica-

tion). Panels (a) and (b) give cross-sectional estimates with log luminosity and the lit indicator

(conditioning for log land area and country-survey-year constants). Panels (c) and (d) give panel

estimates (with unit fixed effects and country-survey-year fixed effects). Red markers [diamonds]

give the estimates with the harmonized and adjusted VIIRS-DMSP series, while blue markers

[squares] report analogous estimates with the unadjusted for top-coding and blooming series. The

cross-sectional analysis suggests that within-country across space) differences in luminosity corre-

late significantly with schooling, access to public goods, and household assets (as captured in the

composite wealth index). The estimates appear similar in urban and rural locations. Besides, the

adjustment for top-coding and blooming slightly improves the coefficient’s magnitude. The panel

specifications yield somewhat different patterns. First, the coefficients are statistically indistin-

guishable from zero when one uses the ‘raw’ luminosity series. In contrast, the coefficients are

higher and pass standard statistical significance thresholds with the newly compiled harmonized

and adjusted for top-coding, blooming, and sensor calibration lights series. Second, the coefficients

in the urban sample of survey respondents are always larger than the ones in the rural sample,

telling that the local development-luminosity nexus is stronger in urban areas.
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Figure B3: Aggregation Example. DHS Clusters and Gridcells

The figure maps the southern coast of Mozambique near the city of Maxixe/Inhambane. The circles represent DHS

clusters (enumeration areas), colored by the survey year. The grid gives the cells at which we aggregate and analyze

the DHS data. The background imagery is from OpenStreetMap.
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Table B5: DHS Sample

Country
N

years
N

cell-years
Sample years

1 Angola 3 486 2006, 2011, 2015
2 Benin 4 366 1996, 2001, 2012, 2017
3 Burkina Faso 6 980 1993, 1999, 2003, 2010, 2014, 2017
4 Burundi 3 129 2010, 2012, 2016
5 Cameroon 3 633 2004, 2011, 2018
6 CAR 1 64 1994
7 Chad 1 330 2014
8 Comoros 1 10 2012
9 Cote d’Ivoire 3 382 1994, 1998, 2012
10 Democratic Republic of the Congo 2 586 2007, 2013
11 Egypt 7 839 1992, 1995, 2000, 2003, 2005, 2008, 2014
12 Gabon 1 131 2012
13 Ghana 7 1069 1993, 1998, 2003, 2008, 2014, 2016, 2019
14 Guinea 4 621 1999, 2005, 2012, 2018
15 Kenya 4 826 2003, 2008, 2014, 2015
16 Lesotho 3 157 2004, 2009, 2014
17 Liberia 6 529 2007, 2009, 2011, 2013, 2016, 2019
18 Madagascar 5 1077 1997, 2008, 2011, 2013, 2016
19 Malawi 7 809 2000, 2004, 2010, 2012, 2014, 2015, 2017
20 Mali 7 1341 1996, 2001, 2006, 2010, 2012, 2015, 2018
21 Morocco 1 223 2003
22 Mozambique 4 840 2009, 2011, 2015, 2018
23 Namibia 3 572 2000, 2006, 2013
24 Niger 2 228 1992, 1998
25 Nigeria 6 2297 2003, 2008, 2010, 2013, 2015, 2018
26 Rwanda 4 166 2005, 2008, 2010, 2014
27 Senegal 11 1379 1993, 1997, 2005, 2008, 2010, 2014, 2015, 2016, 2017, 2018, 2019
28 Sierra Leone 4 392 2008, 2013, 2016, 2019
29 Swaziland 1 32 2006
30 Tanzania 7 1962 1999, 2003, 2007, 2010, 2012, 2015, 2017
31 Togo 3 220 1998, 2013, 2017
32 Uganda 8 1232 2000, 2006, 2009, 2010, 2011, 2014, 2016, 2018
33 Zambia 3 867 2007, 2013, 2018
34 Zimbabwe 4 814 1999, 2005, 2010, 2015

Table B6: Descriptive Statistics - Nightlights and DHS Outcomes

Min p10 p50 p90 Max Mean SD N

Sensor, blooming, & topcode fixes 0.00 0.00 0.00 698.00 304,748.00 840.72 5,572.68 22589
Sensor calibration only 0.00 0.00 15.00 1,973.00 55,947.00 1,196.10 4,468.00 22589
Log of sensor, blooming, & topcode fixes -0.69 -0.69 -0.69 6.55 12.63 1.61 3.15 22589
Log of sensor calibration only -0.69 -0.69 2.74 7.59 10.93 2.75 3.55 22589
Sensor, blooming, & topcode fixes (dummy) 0.00 0.00 0.00 1.00 1.00 0.42 0.49 22589
Sensor calibration only (dummy) 0.00 0.00 1.00 1.00 1.00 0.53 0.50 22589
Gridcell area in km2 4.00 689.59 753.95 768.53 769.31 727.21 102.70 22589
Log of gridcell area in km2 1.39 6.54 6.63 6.64 6.65 6.56 0.31 22589
Years of Schooling(15-39) 0.00 0.76 5.07 8.97 13.83 4.99 3.02 18996
DHS Composite Wealth Index 1.00 1.35 2.45 3.99 5.00 2.57 0.97 19215
Piped Water Access 0.00 0.00 0.05 0.88 1.00 0.25 0.33 22503
Household Electricity Access 0.00 0.00 0.04 0.86 1.00 0.23 0.33 22507

The table reports summary statistics for the nightlights and DHS data employed. The observations that come from

34 African countries are at the grid level. For the log of nightlights, we take ((half of the minimum value of positive

NL) + NL) before taking the log.
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Figure B4: DHS Development Outcomes across Lit and Unlit Grid-cells

(a) Mean Adult (15-39) years schl. (b) Avg. Wealth Index

(c) Flush or Pit Toilet (d) HH has Elect.

The figure plots the histograms of four proxies of local development for lit and unlit 0.25×0.25 gridcells after netting

country-survey-year fixed-effects and log land area. Panel (a) gives average years of schooling for individuals between

15 and 39 years old. Panel (b) gives the DHS composite wealth index, based on household assets. Panel (c) gives the

tabulations on access to flush or pit toilets. Panel (d) gives the histograms for household access to electricity.
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Table B7: DHS Cross-sectional Estimates

(1) (2) (3) (4)
Mean

Adult (15-39)
years schl.

Avg.
Wealth
Index

Flush
or Pit
Toilet

HH
has

Elect.

Panel A: Log sum of nightlights - sensor, blooming, & topcode fixes

ln(minNL/2+NL) 0.356∗∗∗ 0.198∗∗∗ 0.0355∗∗∗ 0.0508∗∗∗

(0.0160) (0.00550) (0.00205) (0.00178)

Obs 18996 19215 22506 22507
Obs(NL=0) 11055 11286 13148 13149
FEs cntry-yr cntry-yr cntry-yr cntry-yr
units gc1km-yr gc1km-yr gc1km-yr gc1km-yr
R2 0.578 0.392 0.437 0.594

Panel B: Log sum of nightlights - sensor calibration only

ln(minNL/2+NL) 0.296∗∗∗ 0.169∗∗∗ 0.0318∗∗∗ 0.0414∗∗∗

(0.0151) (0.00594) (0.00196) (0.00180)

Obs 18996 19215 22506 22507
Obs(NL=0) 8917 8847 10459 10459
FEs cntry-yr cntry-yr cntry-yr cntry-yr
units gc1km-yr gc1km-yr gc1km-yr gc1km-yr
R2 0.569 0.377 0.441 0.573

Panel C: lit dummy - sensor, blooming, & topcode fixes

1(NL>0) 1.670∗∗∗ 0.953∗∗∗ 0.180∗∗∗ 0.231∗∗∗

(0.0880) (0.0361) (0.0120) (0.0108)

Obs 18996 19215 22506 22507
Obs(NL=0) 11055 11286 13148 13149
FEs cntry-yr cntry-yr cntry-yr cntry-yr
units gc1km-yr gc1km-yr gc1km-yr gc1km-yr
R2 0.545 0.301 0.422 0.532

Panel D: lit dummy - sensor calibration only

1(NL>0) 1.485∗∗∗ 0.861∗∗∗ 0.173∗∗∗ 0.197∗∗∗

(0.0955) (0.0390) (0.0122) (0.0106)

Obs 18996 19215 22506 22507
Obs(NL=0) 8917 8847 10459 10459
FEs cntry-yr cntry-yr cntry-yr cntry-yr
units gc1km-yr gc1km-yr gc1km-yr gc1km-yr
R2 0.533 0.265 0.418 0.506

Note: This table presents regressions of economic indicators from the DHS on nightlights. Observations are 0.25 x
0.25 degree gridcell-years. Each panel is done with a different definition for nightlights: Panel A uses the log sum of
nightlights that have been adjusted for cross-sensor calibration and to fix blooming and topcoding, panel B uses the
log of sum nightlights that have only been adjusted for cross-sensor calibration, Panel C uses a dummy if the cell is
lit based on nightlights that have been adjusted for cross-sensor calibration and to fix blooming and topcoding, and
Panel D uses a dummy if the cell is lit based on nightlights that have been adjusted for cross-sensor calibration. All
specifications include the log area of the cell, and fixed effects for country-year. Standard errors in parentheses are
clustered at the block level, where each block is 10x10 gridcells. ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Table B8: DHS Panel Estimates

(1) (2) (3) (4)
Mean

Adult (15-39)
years schl.

Avg.
Wealth
Index

Flush
or Pit
Toilet

HH
has

Elect.

Panel A: Log sum of nightlights - sensor, blooming, & topcode fixes

ln(minNL/2+NL) 0.0530∗∗∗ 0.0199∗∗∗ 0.00223 0.0109∗∗∗

(0.0125) (0.00574) (0.00186) (0.00195)

Obs 14714 15068 18367 18367
Obs(NL=0) 7620 8037 9803 9803
FEs cntry-yr cntry-yr cntry-yr cntry-yr
units gc1km-yr gc1km-yr gc1km-yr gc1km-yr
R2 0.893 0.787 0.812 0.807

Panel B: Log sum of nightlights - sensor calibration only

ln(minNL/2+NL) 0.0262∗∗∗ 0.00940∗∗ 0.00222 0.00532∗∗∗

(0.00893) (0.00396) (0.00136) (0.00136)

Obs 14714 15068 18367 18367
Obs(NL=0) 5884 6002 7509 7509
FEs cntry-yr cntry-yr cntry-yr cntry-yr
units gc1km-yr gc1km-yr gc1km-yr gc1km-yr
R2 0.892 0.787 0.812 0.807

Panel C: lit dummy - sensor, blooming, & topcode fixes

1(NL>0) 0.124∗∗∗ 0.0646∗∗∗ 0.0120∗ 0.0189∗∗∗

(0.0418) (0.0204) (0.00676) (0.00720)

Obs 14714 15068 18367 18367
Obs(NL=0) 7620 8037 9803 9803
FEs cntry-yr cntry-yr cntry-yr cntry-yr
units gc1km-yr gc1km-yr gc1km-yr gc1km-yr
R2 0.892 0.787 0.812 0.807

Panel D: lit dummy - sensor calibration only

1(NL>0) 0.0203 0.00590 0.00668 0.000453
(0.0428) (0.0186) (0.00582) (0.00597)

Obs 14714 15068 18367 18367
Obs(NL=0) 5884 6002 7509 7509
FEs cntry-yr cntry-yr cntry-yr cntry-yr
units gc1km-yr gc1km-yr gc1km-yr gc1km-yr
R2 0.892 0.786 0.812 0.807

Note: This table presents regressions of economic indicators from the DHS on nightlights. Observations are 0.25 x
0.25 degree gridcell-years. Each panel is done with a different definition for nightlights: Panel A uses the log sum of
nightlights that have been adjusted for cross-sensor calibration and to fix blooming and topcoding, panel B uses the
log of sum nightlights that have only been adjusted for cross-sensor calibration, Panel C uses a dummy if the cell is
lit based on nightlights that have been adjusted for cross-sensor calibration and to fix blooming and topcoding, and
Panel D uses a dummy if the cell is lit based on nightlights that have been adjusted for cross-sensor calibration. All
specifications include fixed effects for country-year, and gridcell. Standard errors in parentheses are clustered at the
block level, where each block is 10x10 gridcells. ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Figure B5: Schooling-Luminosity Correlation. Further Evidence

(a) Cross-sectional, varying Spatial Unit size (b) Panel, varying Spatial Unit size

(c) Cross-sectional, varying FE size (d) Panel, varying FE size

The figure plots coefficients from regressions associating mean years of schooling of individuals aged 15-39 on Log

Luminosity. Panels (a) and (c) give cross-sectional estimates with country-survey year constants, controlling also

for the gridcell’s log land area. Panels (b) and (d) give panel estimates that, besides the country-year constants,

also include gridcell fixed effects. Panels (a)-(b) plot coefficients of log luminosity varying the (gridcell) size unit of

the empirical analysis. Panel (c) plots cross-sectional coefficients of log luminosity augmenting the specification with

block fixed effects of various sizes. Panel (d) plots panel coefficients of log luminosity augmenting the specification

with interactions between country-survey-year constants with block fixed effects of various sizes. Red markers denote

estimates using the harmonized VIIRS-DMSP luminosity series, adjusting the DMSP for top coding, sensor calibra-

tion, and blooming. Blue markers denote estimates using the unadjusted merged VIIRS-DMSP luminosity series.

The bars denote 95% confidence intervals, based on standard errors clustered at the grid-cell level for panels (c) and

(d) and at the spatial unit level for panels (a) and (b).
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Figure B6: Household Access to Electricity-Luminosity Correlation. Further Evidence

(a) Cross-sectional, varying Spatial Unit size (b) Panel, varying Spatial Unit size

(c) Cross-sectional, varying FE size (d) Panel, varying FE size

The figure plots coefficients from regressions associating household access to electricity on Log Luminosity. Panels

(a) and (c) give cross-sectional estimates with country-survey year constants, controlling also for the gridcell’s log

land area. Panels (b) and (d) give panel estimates that, besides the country-year constants, also include gridcell fixed

effects. Panels (a)-(b) plot coefficients of log luminosity varying the (gridcell) size unit of the empirical analysis. Panel

(c) plots cross-sectional coefficients of log luminosity augmenting the specification with block fixed effects of various

sizes. Panel (d) plots panel coefficients of log luminosity augmenting the specification with interactions between

country-survey-year constants with block fixed effects of various sizes. Red markers denote estimates using the

harmonized VIIRS-DMSP luminosity series, adjusting the DMSP for top coding, sensor calibration, and blooming.

Blue markers denote estimates using the unadjusted merged VIIRS-DMSP luminosity series. The bars denote 95%

confidence intervals, based on standard errors clustered at the grid-cell level for panels (c) and (d) and at the spatial

unit level for panels (a) and (b).
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Figure B7: Household Access to Flush/Pit Toilet-Luminosity Correlation. Further Evidence

(a) Cross-sectional, varying Spatial Unit size (b) Panel, varying Spatial Unit size

(c) Cross-sectional, varying FE size (d) Panel, varying FE size

The figure plots coefficients from regressions associating household access to flush or pit toilet on Log Luminosity.

Panels (a) and (c) give cross-sectional estimates with country-survey year constants, controlling also for the gridcell’s

log land area. Panels (b) and (d) give panel estimates that, besides the country-year constants, also include gridcell

fixed effects. Panels (a)-(b) plot coefficients of log luminosity varying the (gridcell) size unit of the empirical analysis.

Panel (c) plots cross-sectional coefficients of log luminosity augmenting the specification with block fixed effects

of various sizes. Panel (d) plots panel coefficients of log luminosity augmenting the specification with interactions

between country-survey-year constants with block fixed effects of various sizes. Red markers denote estimates using

the harmonized VIIRS-DMSP luminosity series, adjusting the DMSP for top coding, sensor calibration, and blooming.

Blue markers denote estimates using the unadjusted merged VIIRS-DMSP luminosity series. The bars denote 95%

confidence intervals, based on standard errors clustered at the grid-cell level for panels (c) and (d) and at the spatial

unit level for panels (a) and (b).
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Figure B8: Local Development - Luminosity Association. Urban and Rural Areas

(a) Cross-section - Log Nightlights (b) Cross-section - Lit dummy

(c) Panel - Log Nightlights (d) Panel - Lit dummy

Notes: This figure plots coefficients from regressions of standardized DHS measures on nightlights. For the luminosity

variables, panels (a) and (c) use log nightlights and panels (b) and (d) use an indicator equal to one for positive lights

and zero otherwise. The top panels (a) and (b) control for country by year fixed effects. Panels (a) and (b) control for

log grid cell area, while panels (b) and (c) control for grid cell fixed effects. In each panel, estimates from the subset

of urban grid cells (red diamonds) are compared with estimates from the subset of rural grid cells (blue squares).

The solid markers denote estimates using our corrected nightlight series, and hollow markers denote estimates using

the unadjusted series. For these figures, all DHS outcomes are standardized to have a mean of zero and a standard

deviation of one. The bars represent 95% confidence intervals, and standard errors are clustered at the gridcell level.
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B.3 Mozambique Census

Summary Statistics Appendix Table B9 gives summary statistics of local development mea-

sures and nighttime luminosity across Mozambican localities (admin-4 units). We proxy local

development with the mean years of schooling of the population aged 15-39 years, as recorded in

the Censuses of 1997, 2007, and 2017; and with the share of employment outside agriculture for

15-24 years old, using information from the 1997 and 2007 Censuses (as the data is missing for

the 2017 Censuses). We take the mean values among the young, as in the panel estimates, since

we want to capture the “flow” of these variables more accurately. We have information for the

full census for 1997, 2007, and 2017. The table gives summary statistics of various luminosity

transformations using the newly-compiled harmonized and adjusted VIIRS-DMSP series and with

the merged VIIRS-DMSP series without adjusting the later for top-coding and blooming. Panel A

gives the statistics pooling across all census years. Panels B, C, and D give the statistics for the

1997, the 2007, and the 2017 Census, respectively.

Patterns Appendix Figure B9 illustrates the spatial distribution of luminosity across 1, 184

Mozambican localities in 1997, 2007, and 2017, the Census years. The maps use the newly-compiled

lights series that fuses the VIIRS data (post-2013) to the adjusted for blooming, top-coding, and sen-

sor calibration DMSP series (1992-2013) with the extremely randomized forest (ensemble) method,

detailed in Section 2 of the paper.

Cross-Sectional Estimates Appendix Tables B10 and B11 report cross-sectional estimates as-

sociating mean years of schooling of the population aged 15-39 years and the share of youth em-

ployment outside agriculture with log luminosity and a lit indicator, respectively across the census

years. Panel A gives estimates across admin-2 units (distritos). Panel B gives estimates across

admin-3 units (postos). Panel C gives estimates across admin-4 units (localidades). All specifica-

tions condition on log land area and census-year constants. Panel A conditions also on census-year

specific admin-1 (province) fixed-effects. Panel B conditions also on census-year specific admin-2

(district) fixed-effects. Panel C conditions also on census-year specific admin-3 (posto) fixed-effects.

The estimates suggest that employment outside of agriculture is about 10 percentage points and

mean schooling about 0.6 years higher in lit admin-2, admin-3, or admin-4 units than unlit ones.

Panel Estimates Appendix Tables B12 and B13 report panel estimates that explore the dynamic

correlation between local development and luminosity across Mozambican administrative units. All

specifications include administrative unit fixed effects and census year fixed effects. Panel A gives

estimates across admin-2 units (districts). Panel B gives estimates across admin-3 units (postos).

Panel C gives estimates across admin-4 units (localities). Panel A conditions also on census-year
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specific admin-1 (province) fixed-effects. Panel B conditions also on census-year specific admin-2

(district) fixed-effects. Panel C conditions also on census-year specific admin-3 (posto) fixed-effects.

The estimates suggest an increase in mean years of schooling of about 0.25−0.37 and an increase of

non-agriculture employment of about three percentage points for localities that turn lit than those

that stay unlit.

Visual Illustration. Dynamic Correlation Appendix Figure B10 illustrates the within-

locality co-movement of luminosity and mean years of schooling of 15-39-year-old Mozambicans

over 1997−2007 (panels (a)-(b)) and 1997−2017 (panels (c)-(d)). The green bars plot the increase

in schooling across 1, 028 unlit in 1997 localities. Dark green bars in panel (a) reveal an increase in

average schooling of 2.3 years in the 89 localities that turned lit by 2007, much higher than in the

939 localities that remained unlit by 2007 (1.76). The difference in schooling between initially unlit

locations that either stay unlit or turn lit over the twenty years (2017 − 1997) in panel (c) is 0.5

years (4.26 vs 3.85). Blue bars plot the increase in mean schooling for the 98 localities lit in 1997.

Schooling increased by 2.44 years for the 85 that remained lit in 1997, while schooling increased by

2 years in the 13 localities that turned unlit by 2007. Panels (b) and (d) plot changes in schooling

years for the four categories of localities [unlit - unlit (light green), unlit - lit (dark green), lit -

unlit (light blue) and lit - lit (dark blue), conditional on admin-3 fixed effects, to control for the

considerable differences in local development across Mozambique and compare nearby localities.

Differences in schooling correlate with differences in nighttime lights.
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Table B9: Summary Statistics - Mozambique Census and Nighttime Lights

Min p10 p50 p90 Max Mean SD N

Panel A: 1997, 2007, and 2017
Sensor, blooming, & topcode fixes 0.00 0.00 0.00 27.00 20,053.00 52.66 577.71 3378
Sensor calibration only 0.00 0.00 0.00 183.00 22,014.00 113.01 744.21 3378
Log of sensor, blooming, & topcode fixes -0.69 -0.69 -0.69 3.31 9.91 0.11 1.83 3378
Log of sensor calibration only -0.69 -0.69 -0.69 5.21 10.00 0.79 2.51 3378
Sensor, blooming, & topcode fixes (dummy) 0.00 0.00 0.00 1.00 1.00 0.19 0.39 3378
Sensor calibration only (dummy) 0.00 0.00 0.00 1.00 1.00 0.29 0.45 3378
Gridcell area in km2 0.96 86.17 416.78 1,458.47 8,349.15 668.26 854.70 3378
Log of gridcell area in km2 -0.04 4.46 6.03 7.29 9.03 5.91 1.19 3378
Years of adult (15-40) schooling 0.04 0.47 2.45 5.53 8.70 2.82 1.95 3377
Share of youth (15-24) emp. out agriculture 0.00 0.02 0.09 0.34 0.99 0.15 0.16 2252

Panel B: 1997
Sensor, blooming, & topcode fixes 0.00 0.00 0.00 0.00 5,158.00 15.04 201.37 1126
Sensor calibration only 0.00 0.00 0.00 24.00 7,618.00 36.12 335.53 1126
Log of sensor, blooming, & topcode fixes -0.69 -0.69 -0.69 -0.69 8.55 -0.37 1.17 1126
Log of sensor calibration only -0.69 -0.69 -0.69 3.20 8.94 -0.04 1.76 1126
Sensor, blooming, & topcode fixes (dummy) 0.00 0.00 0.00 0.00 1.00 0.09 0.28 1126
Sensor calibration only (dummy) 0.00 0.00 0.00 1.00 1.00 0.13 0.34 1126
Gridcell area in km2 0.96 86.17 416.78 1,458.47 8,349.15 668.26 854.96 1126
Log of gridcell area in km2 -0.04 4.46 6.03 7.29 9.03 5.91 1.19 1126
Years of adult (15-40) schooling 0.04 0.27 0.68 1.78 4.66 0.89 0.68 1126
Share of youth (15-24) emp. out agriculture 0.00 0.02 0.07 0.29 0.99 0.12 0.14 1126

Panel C: 2007
Sensor, blooming, & topcode fixes 0.00 0.00 0.00 15.00 9,523.00 36.64 417.87 1126
Sensor calibration only 0.00 0.00 0.00 121.00 13,269.00 82.65 617.15 1126
Log of sensor, blooming, & topcode fixes -0.69 -0.69 -0.69 2.74 9.16 -0.06 1.64 1126
Log of sensor calibration only -0.69 -0.69 -0.69 4.80 9.49 0.47 2.30 1126
Sensor, blooming, & topcode fixes (dummy) 0.00 0.00 0.00 1.00 1.00 0.15 0.36 1126
Sensor calibration only (dummy) 0.00 0.00 0.00 1.00 1.00 0.22 0.41 1126
Gridcell area in km2 0.96 86.17 416.78 1,458.47 8,349.15 668.26 854.96 1126
Log of gridcell area in km2 -0.04 4.46 6.03 7.29 9.03 5.91 1.19 1126
Years of adult (15-40) schooling 0.32 1.53 2.46 4.48 7.25 2.75 1.19 1126
Share of youth (15-24) emp. out agriculture 0.01 0.03 0.11 0.38 0.97 0.17 0.17 1126

Panel D: 2017
Sensor, blooming, & topcode fixes 0.00 0.00 0.00 86.00 20,053.00 106.30 884.39 1126
Sensor calibration only 0.00 0.00 1.00 390.00 22,014.00 220.26 1,072.72 1126
Log of sensor, blooming, & topcode fixes -0.69 -0.69 -0.69 4.46 9.91 0.74 2.31 1126
Log of sensor calibration only -0.69 -0.69 0.41 5.97 10.00 1.93 2.91 1126
Sensor, blooming, & topcode fixes (dummy) 0.00 0.00 0.00 1.00 1.00 0.33 0.47 1126
Sensor calibration only (dummy) 0.00 0.00 1.00 1.00 1.00 0.52 0.50 1126
Gridcell area in km2 0.96 86.17 416.78 1,458.47 8,349.15 668.26 854.96 1126
Log of gridcell area in km2 -0.04 4.46 6.03 7.29 9.03 5.91 1.19 1126
Years of adult (15-40) schooling 0.66 3.14 4.81 6.48 8.70 4.83 1.34 1125

The table reports summary statistics for the variables employed in Section 5 of the main paper that associates

regional development, as recorded in the three post-independence Mozambican censuses (1997, 2007, and 2017) and

nightlights lights (luminosity) across 1126 admin-4 units (localities).
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Figure B9: Mozambique Lit/Unlit Localities in 1997, 2007, 2017

(a) 1997 (b) 2007 (c) 2017

The figure plots the spatial distribution of the lit indicator using the newly complied harmonized and adjusted

VIIRS-DSMP lights series across Mozambican localities in 1997, 2007, and 2017, the years of the three Mozambican

censuses.
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Table B10: Mozambique Cross-Sectional Estimates

Sensor, Blooming, & Topcode Fixes Sensor Calibration Only

(1) (2) (3) (4) (5) (6)
Mean
Adult
(15-39)

years schl.
(97&07)

Share
Youth
(15-24)

Emp. out Ag.
(97&07)

Mean
Adult
(15-39)

years schl.
(17 only)

Mean
Adult
(15-39)

years schl.
(97&07)

Share
Youth
(15-24)

Emp. out Ag.
(97&07)

Mean
Adult
(15-39)

years schl.
(17 only)

Panel A: Admin Level 2

ln(minNL/2+NL) 0.194∗∗∗ 0.0253∗∗∗ 0.0441 0.188∗∗∗ 0.0241∗∗∗ 0.0483
(0.0250) (0.00431) (0.0620) (0.0240) (0.00433) (0.0892)

Obs 282 282 141 282 282 141
Obs(NL=0) 159 159 14 135 135 2
FEs cntry-yr cntry-yr cntry-yr cntry-yr cntry-yr cntry-yr
units adm2-yr adm2-yr adm2-yr adm2-yr adm2-yr adm2-yr
R2 0.844 0.722 0.182 0.837 0.714 0.180

Panel B: Admin Level 3

ln(minNL/2+NL) 0.177∗∗∗ 0.0316∗∗∗ 0.211∗∗∗ 0.133∗∗∗ 0.0212∗∗∗ 0.159∗∗∗

(0.0183) (0.00337) (0.0237) (0.0136) (0.00233) (0.0192)

Obs 774 774 387 774 774 387
Obs(NL=0) 627 627 190 564 564 114
FEs adm2-yr adm2-yr adm2-yr adm2-yr adm2-yr adm2-yr
units adm3-yr adm3-yr adm3-yr adm3-yr adm3-yr adm3-yr
R2 0.915 0.770 0.588 0.916 0.759 0.565

Panel C: Admin Level 4

ln(minNL/2+NL) 0.213∗∗∗ 0.0338∗∗∗ 0.172∗∗∗ 0.138∗∗∗ 0.0210∗∗∗ 0.145∗∗∗

(0.0267) (0.00456) (0.0318) (0.0166) (0.00291) (0.0239)

Obs 2124 2124 1061 2124 2124 1061
Obs(NL=0) 1903 1903 724 1784 1784 520
FEs adm3-yr adm3-yr adm3-yr adm3-yr adm3-yr adm3-yr
units adm4-yr adm4-yr adm4-yr adm4-yr adm4-yr adm4-yr
R2 0.894 0.779 0.616 0.894 0.775 0.624

Note: This table presents regressions of economic indicators from the Mozambique census on nightlights. Each
panel is done at a different administrative level: panel A used admin 2 units, panel B admin 3, and panel C admin
4. Columns 1-3 use nightlights that have been adjusted for cross-sensor calibration including the downgrading of
VIIRS. Columns 4-6 use nightlights that have also been adjusted to fix blooming and topcoding. All specifications
include nightlights as the log sum of light in a district, the log area of the district, and fixed effects for year
interacted with the admin unit one level above (e.g. in panel C, units are admin 4 and so we include admin 3 by year
fixed effects). Standard errors in parentheses are clustered at the admin 2 level. ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Table B11: Mozambique Cross-Sectional Estimates - Lit Indicator

Sensor, Blooming, & Topcode Fixes Sensor Calibration Only

(1) (2) (3) (4) (5) (6)
Mean
Adult
(15-39)

years schl.
(97&07)

Share
Youth
(15-24)

Emp. out Ag.
(97&07)

Mean
Adult
(15-39)

years schl.
(17 only)

Mean
Adult
(15-39)

years schl.
(97&07)

Share
Youth
(15-24)

Emp. out Ag.
(97&07)

Mean
Adult
(15-39)

years schl.
(17 only)

Panel A: Admin Level 2

1(NL>0) 0.710∗∗∗ 0.0864∗∗∗ 0.406 0.675∗∗∗ 0.0878∗∗∗ 0.253
(0.116) (0.0207) (0.287) (0.113) (0.0210) (0.472)

Obs 282 282 141 282 282 141
Obs(NL=0) 159 159 14 135 135 2
FEs cntry-yr cntry-yr cntry-yr cntry-yr cntry-yr cntry-yr
units adm2-yr adm2-yr adm2-yr adm2-yr adm2-yr adm2-yr
R2 0.794 0.668 0.184 0.789 0.670 0.177

Panel B: Admin Level 3

1(NL>0) 0.629∗∗∗ 0.107∗∗∗ 0.849∗∗∗ 0.604∗∗∗ 0.0888∗∗∗ 0.630∗∗∗

(0.0772) (0.0143) (0.113) (0.0764) (0.0121) (0.145)

Obs 774 774 387 774 774 387
Obs(NL=0) 627 627 190 564 564 114
FEs adm2-yr adm2-yr adm2-yr adm2-yr adm2-yr adm2-yr
units adm3-yr adm3-yr adm3-yr adm3-yr adm3-yr adm3-yr
R2 0.904 0.739 0.549 0.905 0.731 0.507

Panel C: Admin Level 4

1(NL>0) 0.607∗∗∗ 0.0902∗∗∗ 0.687∗∗∗ 0.555∗∗∗ 0.0842∗∗∗ 0.608∗∗∗

(0.0895) (0.0143) (0.117) (0.0777) (0.0144) (0.113)

Obs 2124 2124 1061 2124 2124 1061
Obs(NL=0) 1903 1903 724 1784 1784 520
FEs adm3-yr adm3-yr adm3-yr adm3-yr adm3-yr adm3-yr
units adm4-yr adm4-yr adm4-yr adm4-yr adm4-yr adm4-yr
R2 0.888 0.764 0.613 0.889 0.766 0.609

Note: This table presents regressions of economic indicators from the Mozambique census on nightlights. Each
panel is done at a different administrative level: panel A used admin 2 units, panel B admin 3, and panel C admin
4. Columns 1-3 use nightlights that have been adjusted for cross-sensor calibration including the downgrading of
VIIRS. Columns 4-6 use nightlights that have also been adjusted to fix blooming and topcoding. All specifications
include nightlights as an indicator for positive values of luminosity, the log area of the district, and fixed effects for
year interacted with the admin unit one level above (e.g. in panel C, units are admin 4 and so we include admin 3
by year fixed effects). Standard errors in parentheses are clustered at the admin 2 level. ∗p < 0.1, ∗∗p < 0.05,
∗∗∗p < 0.01.
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Table B12: Mozambique Panel Estimates

Sensor, Blooming, & Topcode Fixes Sensor Calibration Only

(1) (2) (3) (4) (5) (6)
Mean
Adult
(15-39)

years schl.
(97&07)

Share
Youth
(15-24)

Emp. out Ag.
(97&07)

Mean
Adult
(15-39)

years schl.
(97,07&17)

Mean
Adult
(15-39)

years schl.
(97&07)

Share
Youth
(15-24)

Emp. out Ag.
(97&07)

Mean
Adult
(15-39)

years schl.
(97,07&17)

Panel A: Admin Level 2

ln(minNL/2+NL) 0.0357∗∗ 0.00441∗∗ 0.125∗∗∗ 0.0264∗ 0.00315∗ 0.136∗∗∗

(0.0166) (0.00213) (0.0397) (0.0141) (0.00188) (0.0485)

Obs 282 282 423 282 282 423
Obs(NL=0) 159 159 173 135 135 137
FEs cntry-yr cntry-yr cntry-yr cntry-yr cntry-yr cntry-yr
units adm2-yr adm2-yr adm2-yr adm2-yr adm2-yr adm2-yr
R2 0.983 0.982 0.869 0.983 0.982 0.870

Panel B: Admin Level 3

ln(minNL/2+NL) 0.0547∗∗∗ 0.00989∗∗∗ 0.0946∗∗∗ 0.0292∗∗ 0.00401∗∗ 0.0467∗∗∗

(0.0174) (0.00285) (0.0193) (0.0137) (0.00190) (0.0162)

Obs 774 774 1161 774 774 1161
Obs(NL=0) 627 627 817 564 564 678
FEs adm2-yr adm2-yr adm2-yr adm2-yr adm2-yr adm2-yr
units adm3-yr adm3-yr adm3-yr adm3-yr adm3-yr adm3-yr
R2 0.987 0.971 0.962 0.987 0.970 0.961

Panel C: Admin Level 4

ln(minNL/2+NL) 0.113∗∗∗ 0.0148∗∗∗ 0.0835∗∗∗ 0.0737∗∗∗ 0.00626∗∗ 0.0592∗∗∗

(0.0273) (0.00444) (0.0240) (0.0146) (0.00283) (0.0174)

Obs 2124 2124 3185 2124 2124 3185
Obs(NL=0) 1903 1903 2627 1784 1784 2304
FEs adm3-yr adm3-yr adm3-yr adm3-yr adm3-yr adm3-yr
units adm4-yr adm4-yr adm4-yr adm4-yr adm4-yr adm4-yr
R2 0.978 0.965 0.963 0.978 0.965 0.963

Panel D: Admin Level 4 - No FEs

ln(minNL/2+NL) 0.168∗∗∗ 0.0161∗∗∗ 0.0763∗∗∗ 0.132∗∗∗ 0.00972∗∗∗ 0.0790∗∗∗

(0.0246) (0.00388) (0.0169) (0.0166) (0.00180) (0.0115)

Obs 2250 2250 3374 2250 2250 3374
Obs(NL=0) 1978 1978 2734 1854 1854 2397
FEs cntry-yr cntry-yr cntry-yr cntry-yr cntry-yr cntry-yr
units adm4-yr adm4-yr adm4-yr adm4-yr adm4-yr adm4-yr
R2 0.943 0.937 0.907 0.944 0.936 0.908

Note: This table presents regressions of economic indicators from the Mozambique census on nightlights. Each
panel is done at a different administrative level: panel A used admin 2 units, panel B admin 3, panel C admin 4,
panel D also uses admin 4 units but does not add fixed effects for admin 3 by year. Columns 1-3 use nightlights
that have been adjusted for cross-sensor calibration including the downgrading of VIIRS. Columns 4-6 use
nightlights that have also been adjusted to fix blooming and topcoding. All specifications include nightlights as the
log sum of light in a district and fixed effects for year interacted with the admin unit one level above (e.g. in panel
C, units are admin 4 and so we include admin 3 by year fixed effects). Also included are fixed effects for the admin
level denoted in the panel title, and therefore these coefficients reflect changes. Standard errors in parentheses are
clustered at the admin 2 level. ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Table B13: Mozambique Panel Estimates - Lit Indicator

Sensor, Blooming, & Topcode Fixes Sensor Calibration Only

(1) (2) (3) (4) (5) (6)
Mean
Adult
(15-39)

years schl.
(97&07)

Share
Youth
(15-24)

Emp. out Ag.
(97&07)

Mean
Adult
(15-39)

years schl.
(97,07&17)

Mean
Adult
(15-39)

years schl.
(97&07)

Share
Youth
(15-24)

Emp. out Ag.
(97&07)

Mean
Adult
(15-39)

years schl.
(97,07&17)

Panel A: Admin Level 2

1(NL>0) 0.0879 0.0131∗ 0.432∗∗ 0.0679 0.00908 0.417∗∗

(0.0672) (0.00777) (0.172) (0.0657) (0.00813) (0.192)

Obs 282 282 423 282 282 423
Obs(NL=0) 159 159 173 135 135 137
FEs cntry-yr cntry-yr cntry-yr cntry-yr cntry-yr cntry-yr
units adm2-yr adm2-yr adm2-yr adm2-yr adm2-yr adm2-yr
R2 0.983 0.982 0.868 0.982 0.982 0.868

Panel B: Admin Level 3

1(NL>0) 0.0962 0.0187 0.230∗∗ 0.0786 0.00629 0.0497
(0.0824) (0.0115) (0.0922) (0.0727) (0.0108) (0.0941)

Obs 774 774 1161 774 774 1161
Obs(NL=0) 627 627 817 564 564 678
FEs adm2-yr adm2-yr adm2-yr adm2-yr adm2-yr adm2-yr
units adm3-yr adm3-yr adm3-yr adm3-yr adm3-yr adm3-yr
R2 0.987 0.970 0.961 0.987 0.970 0.961

Panel C: Admin Level 4

1(NL>0) 0.253∗∗∗ 0.0270∗ 0.265∗∗∗ 0.243∗∗∗ 0.0169 0.198∗∗

(0.0881) (0.0156) (0.0766) (0.0660) (0.0128) (0.0761)

Obs 2124 2124 3185 2124 2124 3185
Obs(NL=0) 1903 1903 2627 1784 1784 2304
FEs adm3-yr adm3-yr adm3-yr adm3-yr adm3-yr adm3-yr
units adm4-yr adm4-yr adm4-yr adm4-yr adm4-yr adm4-yr
R2 0.978 0.964 0.963 0.978 0.964 0.963

Panel D: Admin Level 4 - No FEs

1(NL>0) 0.372∗∗∗ 0.0298∗∗ 0.298∗∗∗ 0.489∗∗∗ 0.0305∗∗∗ 0.317∗∗∗

(0.0885) (0.0132) (0.0589) (0.0686) (0.00846) (0.0543)

Obs 2250 2250 3374 2250 2250 3374
Obs(NL=0) 1978 1978 2734 1854 1854 2397
FEs cntry-yr cntry-yr cntry-yr cntry-yr cntry-yr cntry-yr
units adm4-yr adm4-yr adm4-yr adm4-yr adm4-yr adm4-yr
R2 0.940 0.935 0.907 0.942 0.935 0.908

Note: This table presents regressions of economic indicators from the Mozambique census on nightlights. Each
panel is done at a different administrative level: panel A used admin 2 units, panel B admin 3, panel C admin 4,
panel D also uses admin 4 units but does not add fixed effects for admin 3 by year. Columns 1-3 use nightlights
that have been adjusted for cross-sensor calibration including the downgrading of VIIRS. Columns 4-6 use
nightlights that have also been adjusted to fix blooming and topcoding. All specifications include nightlights as an
indicator for positive values of luminosity and fixed effects for year interacted with the admin unit one level above
(e.g. in panel C, units are admin 4 and so we include admin 3 by year fixed effects). Also included are fixed effects
for the admin level denoted in the panel title, and therefore these coefficients reflect changes. Standard errors in
parentheses are clustered at the admin 2 level. ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Figure B10: Mozambique ∆ Mean Years Schooling by Changes in Lit/Unlit

(a) 1997-2007 (b) 1997-2007 (residuals)

(c) 1997-2017 (d) 1997-2017 (residuals)

The figure plots the change in average years of schooling for 15-39-year-olds by changes in the extensive margin of

luminosity across Mozambican localities (admin-4 units). Green bars plot the mean years of schooling change for

initially unlit localities. Dark green bars plot the change in schooling for localities that are turning lit, while light

green bars plot the change in schooling for localities remaining unlit. Blue bars plot the mean years of schooling

change for initially lit localities. Dark blue bars plot the change in schooling for localities that remain lit, while light

blue bars plot the change for localities that turn from lit to unlit. Panels (a) and (c) plot unconditional changes in

mean schooling years over 1997 and 2007 and over 1997 and 2017, respectively; panels (b) and (d) plot changes in

mean years of schooling over 1997-2007 and 1997-2017, conditional on admin-3 fixed effects.
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