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Abstract

Satellite images of nighttime lights are commonly used to proxy local economic conditions.
Despite their popularity, there are concerns about how accurately they capture local development
in different settings and scales. We compile an annual series of comparable nighttime lights
globally from 1992 to 2023 by applying adjustments that consider key factors affecting accuracy
and comparability over time: top coding, blooming, and variations in satellite systems (DMSP
and VIIRS). Applied to various low-income settings, the adjusted luminosity series outperforms
the unadjusted series as a predictor of local development, particularly over time and at higher
spatial resolutions.
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1 Introduction

A considerable literature in economics, political science, and remote sensing employs satellite night-

time lights (luminosity) to proxy development (Donaldson and Storeygard, 2016; Levin et al.,

2020).1 The use of satellite data appears a priori helpful for low and middle-income countries

with weak state capacity and recurrent conflict. Earlier research reveals that luminosity is a valu-

able proxy for cross-country GDP (Henderson et al., 2012; Chen and Nordhaus, 2011); hence, re-

searchers use luminosity to correct for inconsistencies and noise in country-level statistics stemming

from challenges measuring output in economies specializing in agriculture, with a large informal

economy, and underfunded statistical agencies (Pinkovskiy and Sala-i Martin, 2016). Luminosity

appears helpful in correcting inflated output statistics that non-democratic governments often pro-

duce (Martinez, 2022) and quantifying profit shifting by multinationals (Bilicka and Seidel, 2022).

Increasingly, applied research uses luminosity to measure regional well-being, as data unavailability

and error-in-variables are more serious at the local level. Many papers use luminosity to proxy

development across administrative units (Hodler and Raschky, 2014; Alesina et al., 2016), cities

(Storeygard, 2016), historical ethnic homelands (Michalopoulos and Papaioannou, 2013, 2014), and

grid-squares (Henderson et al., 2018).2

However, there are still open issues regarding how accurately luminosity predicts development.

First, while some studies validate the correlation between luminosity and development measures,

there are concerns about the strength of the association in broader samples. Second, researchers

have leeway on the validation, for example, selecting the development proxy and the spatial units,

which sometimes are large areas and, in other cases, small grid squares. Third, while some papers

use unadjusted series (e.g., Michalopoulos and Papaioannou, 2013), others adjust for top coding and

the tendency of light to spill to neighboring areas (e.g., Henderson et al., 2018). Fourth, mapping

the lower resolution and coarser pre-2013 series (DMSP-OLS) to the post-2013 (VIIRS) series is not

straightforward. Most papers abstain from dealing with this issue using either the pre- or the post-

2013 series. Moreover, as most studies are cross-sectional, it is still unclear how strongly changes in

luminosity reflect changes in local well-being over time. Consequently, despite the widespread use

of luminosity data in economics and political science, its effectiveness in capturing development in

low-income settings remains ambiguous, particularly concerning the scale, location, and period of

1This literature comprises papers on Africa (Hjort and Poulsen, 2019; Storeygard, 2016; Michalopoulos and Pa-
paioannou, 2014; Dreher et al., 2019; Henderson et al., 2017), Asia (Harari, 2020; Chodorow-Reich et al., 2020;
Baum-Snow et al., 2017), Europe (Gibson, 2021), North America (Bleakley and Lin, 2012), and worldwide (Ch et al.,
2021; Henderson et al., 2018; Pinkovskiy, 2017; Martinez, 2022).

2A related research stream combines light density with daytime imagery and other data to better proxy local
activity (Jean et al., 2016; Yeh et al., 2020; Khachiyan et al., 2022; Rossi-Hansberg and Zhang, 2025). However,
while the methods are usually made public, daytime input data is typically proprietary. Besides, even when daytime
data are freely available (e.g., landsat), replicating the methods is prohibitive for typical economic research projects.
Future work could use and blend the data produced here with local wealth estimates from daytime imagery.
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analysis.

Recent papers paint a somewhat conflicting picture. On the one hand, India-based tabulations

suggest that lights proxy well regional economic conditions in levels and changes (Asher et al., 2021).

On the other hand, studies from Indonesia, China, and South Africa suggest that variation of GDP

does not correlate strongly with lights outside cities, at least for the early period, 1992 − 2013

(Gibson et al., 2021). Some other papers reveal strong cross-sectional but weak panel associations

(Chen et al., 2024).

In this paper, we build a global dataset of luminosity from 1992 to 2023, and then explore the

association between the newly compiled series and various proxies of local development. For our

validation analysis, we focus on Africa and other low-income regions, where the output data quality

is poor, and there is relatively limited regional data on economic activity, especially at granular

levels.3 As research has moved from cross-country designs tomeso approaches that exploit variation

within-country across regions (administrative units, ethnic homelands, etc.) or grid squares of

various sizes, we also explore the luminosity-development nexus across areas of varying spatial

resolution.

Our first contribution is to create a standardized panel of global nightlights over three decades

(1992 − 2023), integrating the pre-2013 (DMSP) and post-2013 (VIIRS) series after various ad-

justments to reduce measurement error.4 While the VIIRS data series offers various improvements

(Gibson et al., 2021), research often requires the longest possible time series to study economic phe-

nomena in the developing world, for example, the impact of democratic transitions, trade-induced

shocks, and financial liberalization. Adjusting and integrating the old luminosity series with the

newer ones can allow exploring a wider range of questions that exploit not only cross-sectional

but also time series variation. While other papers have made adjustments to specific aspects of

nighttime lights data (Cao et al., 2019; Nechaev et al., 2021; Bluhm and Krause, 2022), we apply

blooming and topcoding corrections to the DMSP series and extend the series by fusing it with the

VIIRS data.

Our second contribution is to validate the newly constructed luminosity series as a proxy for

local development in low-income environments, zooming in on the spatial dimension of aggregation

and the granularity of the analysis. We compare the performance of the unadjusted luminosity

series with our adjusted and harmonized one, examining their correlation with education, household

wealth, electrification, and other development proxies in various settings: across gridcells of different

sizes using 139 georeferenced DHS surveys from 34 African countries; tabulating all Mozambican

censuses, across coarse and fine administrative units; using Indonesian surveys spanning thousands

3As more data become available, such as urban structures from daytime satellite images and mobile telephony
and large-sample surveys are used more, researchers will increasingly have more tools to capture local development.

4The replication code for the dataset is available on GitHub at github.com/tannerregan/world nightlights. This
open-source code allows researchers to customize the production of adjusted nightlights series, and the GitHub page
also includes a link to download the global dataset directly.
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of villages with multiple development outcomes, and using rich surveys across Indian villages and

towns. The analysis of these data, spanning the DMSP and the VIIRS periods, reveals four main

takeaways. First, the new luminosity series correlates strongly with local development in the cross-

section and over time. The correlation is, however, far from perfect. As lights are very skewed, the

binary (lit/unlit) transformation (stemming from the many zeros), which empirical studies often

take, cannot perfectly capture the significant variation in regional assets, education, and public

goods. Nonetheless, luminosity correlates significantly with numerous local well-being proxies.

Second, the correlation is stronger, especially in panel estimation, with the adjusted and harmonized

series, telling of a reduction in measurement error from our adjustments of the noisier DMSP series

and their merging with the higher quality VIIRS. Third, the luminosity-development association

retains significance across spatial units of various sizes, even when exploiting localized variation.

Fourth, the adjustments yield stronger correlations between luminosity and local development at

higher levels of spatial resolution, and especially when comparing small regions and gridcells. In

contrast, across coarse administrative units or large grid squares, the adjustments yield minor

improvements in the strength of the luminosity-development link. So, as empirical papers are

increasingly using local identification schemes, such as spatial Regression Discontinuity Designs

(RDD), researchers should consider our adjustments.

Structure Section 2 details our methodology for correcting the DMSP-OLS series and merging it

with the downgraded VIIRS series. Then, we explore the cross-sectional and over time association

of luminosity with development across countries (Section 3), gridcells in Africa (Section 4), and

administrative units in Mozambique, Indonesia, and India (Section 5). In Section 6, we replicate two

pan-African studies and one global study, comparing the initial results with the unadjusted series

to the ones with the adjusted and merged nighttime lights series. Section 7 concludes, discussing

avenues for future research.

2 Methods and New Series

This section presents the data and our approach to compiling a new global time series of nighttime

lights at a pixel level from 1992 to 2023. Unless otherwise noted, by ‘pixels’ we refer to the

source spatial resolution of the DMSP data: equally spaced by 30-arc seconds, equivalent to a

926m × 926m grid at the equator (the distance in meters shrinks towards the poles). First,

we discuss the adjustments to the DMSP series. Second, we present the machine learning (ML)

approach that converts and merges the new VIIRS series to the adjusted DMSP.
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2.1 Adjusted DMSP Series

The DMSP data from 1992 − 2013 has three deficiencies, which are by now well understood:

cross-sensor calibration, top coding, and blooming.5 As earlier studies have addressed these issues

individually, we discuss them only briefly.

Cross-sensor Accuracy As the DMSP series comes from six satellites, luminosity readings

vary. Sometimes, values differ even for the same satellite due to the sensor’s degradation. A long-

standing remote sensing literature has addressed this problem. Li et al. (2020), for instance, provide

a downloadable DMSP series, which integrates the cross-sensor correction from Li and Zhou (2017).

Using data from sensors with overlapping or nearby years, these studies estimate a second-order

polynomial to map values across sensors. In this paper, we refer to the Li et al. (2020) data as the

‘unadjusted’ series and compare it to the adjustments we make in the following steps.

Top Coding The DMSP data are 8-bit integers, Digital Numbers (DN), ranging from 0 to 63.

This limits stored information. In addition, as sensors are calibrated to detect clouds they miss

brighter lights, so a DN of 63 corresponds to a range of actual radiance. DMSP pixels with DNs

in the mid-50s also suffer from ‘implicit’ top coding, as they are averages of multiple potentially

top-coded values (Bluhm and Krause, 2022).6 Alternatively, a ‘radiance-calibrated’ (RC) vintage

of DMSP, which is not top coded, is available for only a sub-sample of seven years (Hsu et al.,

2015). We adjust the series by combining the DMSP with the RC data using the approach of

Bluhm and Krause (2022). First, for each year, we identify pixels (number Nt) with DN≥ 55 for

replacement. Second, we rank the Nt pixels using the RC series from the nearest year. Third, we

generate “structural values” from a truncated Pareto distribution: f(x) = αLαx−α−1

1−(L/H)α .
7 Fourth, we

replace the Nt top-coded pixels so that the pixel with the i -th highest rank is replaced by the i -th

highest “structural value”.

Blooming Due to weak spatial accuracy, the DMSP data suffer from blooming (sometimes called

‘blurring’ or ‘bleeding’).8 The sensor records a window where central pixels cover less space on the

5Another issue is ‘bottom coding’ of low light areas. We are unaware of an approach to adjust for this. However,
as discussed below, our corrections substantially strengthen the light-development elasticities even in rural African
regions with very low light levels.

6In practice, many developing countries are not particularly susceptible to topcoding issues. For instance, most
DMSP pixels in Africa are completely unlit: 98.4% in 1992, 97.4% in 2002, and 96.8% in 2012, and even among lit
pixels the share of top-coded ones (DN = 63) is tiny: 0.98% in 1992, 1.4% in 2002, and 1.7% in 2012, and the share
of lit pixels with values close to top-coding (DN≥55) is 2.8% in 1992, 5.6% in 2002, and 10% in 2012.

7We use the parameter values from Bluhm and Krause (2022): α = 1.5, lower bound threshold L = 55, and upper
bound threshold H = 2000.

8Some papers suggested that blooming may be more important close to the sea and lakes, but Gibson et al. (2021)
show that this is not the case. Nevertheless, we allow the blooming correction to differ flexibly in coastal areas and
across broad global regions.
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ground than pixels along the edges, ‘stretching out’ the edge pixels (Gibson et al., 2021). The

sensor may also be displaced up to 3km. We follow Cao et al. (2019), who model blooming as

spatial spillovers and remove them. The background light is identified based on all lit pixels that

neighbor at least one unlit pixel; pseudo-light pixels (PLPs). The method works as follows: First,

identify PLPs, lit pixels (DN > 0) with one of their neighboring pixels dark (DN= 0). Second, for

each PLP take the inverse squared-distance weighted sum of light in a surrounding 7× 7 window,

excluding pixels with less light.9 Third, run an OLS regression of the PLP light on the sum of its

neighbors’ lights: DNp = α + β
∑

q
DNq

d2q,p
.10 Fourth, for lit pixels, remove blooming by subtracting

the model-predicted lights; replace pixels’ light with DN ′
p = DNp − α̂− β̂

∑
q
DNq

d2q,p
. Fifth, smooth

each pixel’s value with the mean of it and its eight nearest neighbors, then set all negative values

to zero. The blooming correction increases the share of unlit pixels, which is already large, as it

removes light that spills over from nearby, more lit pixels. The global share of unlit pixels in 1992

rises from 92% to 95% and 2012 from 88% to 91%. However, as shown below, the adjusted series

correlates more strongly with local development despite the higher share of unlit pixels; this is

especially true across small units and pixels and when exploring granular variation.

2.2 Harmonizing the DMSP and VIIRS Series

While VIIRS does not suffer from top coding, blooming, and sensor degradation, it becomes avail-

able only after 2013 thus limiting the scope of research questions. The VIIRS series (we use the

VIIRS VNL V2 series, Elvidge et al. (2021)) is not directly comparable to the DMSP. First, VIIRS

records 14-bit DN, allowing for a wider range and more distinct luminosity values than DMSP.

Second, VIIRS is recorded at a finer spatial resolution than DMSP (15 vs. 30 arc seconds). Third,

the quality of the sensors is (much) better. Consequently, almost all studies rely on one of the

two series. We develop a method to integrate the VIIRS with the DMSP series, creating an un-

interrupted panel of comparable nightlights over three decades. Since the VIIRS data does not

suffer from these issues, our preferred series downgrades VIIRS to match the DMSP series. We

merge VIIRS to four versions of DMSP (unadjusted, blooming only, topcoding only, blooming and

topcoding), and, hence, we end up with four extended series over 1992-2023.

Related Literature Parallel studies also “downgrade” the VIIRS series to make it comparable

to previous data (Li et al., 2020; Nechaev et al., 2021). Li et al. (2020) use a sigmoid function

calibrated in overlapping DMSP-VIIRS years. But, as the authors acknowledge, their series are

comparable only for pixels with high light values, which is not that relevant for the low luminosity

9The 7× 7 window follows the approach of Cao et al. (2019) and works from the assumption that blooming does
not ’stretch out’ from an origin pixel across more than ≈3 adjacent pixels (i.e., ≈3km).

10We estimate the spatial decay separately for broad world regions (see Appendix Table A1), although this does
not affect the estimates much.
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areas in Africa and other low-income regions. Nechaev et al. (2021) use a Convolutional Neural

Network (CNN) to downgrade the VIIRS series. While their approach is comparable to ours, they

only apply it to the ‘unadjusted’ DMSP data, which suffers from blooming and top-coding, and as

such, the merging is not conceptually very appealing. As shown below, the unadjusted series does

a poorer job explaining local development. We take a machine learning (ML) approach agnostic to

the functional form of the two series’ mapping. The concordance of the two series is a problem well-

suited to an ML design, which discovers complex structures not specified in advance (Mullainathan

and Spiess, 2017).

2.2.1 Method

To implement the downgrading of VIIRS and its merging with the DMSP series, we use an ensem-

ble method, considered ‘state-of-the-art’ in machine learning, Sagi and Rokach (2018).11 Ensem-

ble methods combine different models to improve out-of-sample performance over a single model,

(Athey and Imbens, 2019). We use an ‘extremely randomized trees,’ an averaging ensemble method

that combines many decision trees, (Geurts et al., 2006). The principle behind averaging methods is

to build multiple independent models and then average their predictions. Random forests combine

decision trees, each built from a random sample of observations and features (covariates/predictors);

the decision trees use the best splits from the respective samples (Breiman, 2001). Extremely ran-

domized trees take an extra step: instead of picking the ‘best’ thresholds from the sample of

observations and features, pick them randomly, as doing so improves accuracy and computational

efficiency (Geurts et al., 2006).

We aim to predict DMSP-like values for 2014 onward using VIIRS data from those years.

We train the model using data from 2013, the only full year of overlapping DMSP and VIIRS,

and 30-arc-second pixels, which matches the DMSP resolution. As the VIIRS spatial resolution

is 15-arc seconds, our pixels are aggregates of four VIIRS pixels. We use the following features:

(i) pixel statistics (mean, median, min, and max of VIIRS-pixels); (ii) statistics of nearby pixels

(mean and variance within windows of varying widths)12; and (iii) indicators for broad world

regions.13 The ‘decision trees’ allow for all complex interactions between features. The extremely

randomized tree has a set of (regularization) parameters that must be calibrated.14 We implement

11Mullainathan and Spiess (2017) write that ‘while it may be unsurprising that such ensembles perform well on
average... it may be more surprising that they come on top in virtually every prediction competition.’

12The window widths, in number of pixels, are 3, 4, 7, 9, 11, 13, 17, 21. So, for example, the first window is
3× 3 = 9 pixels centered on and including the own-pixel.

13All features are listed in Appendix Table A1 along with the ‘feature importance’. The latter captures the total
reduction of the squared error from a single feature, for each of the four models.

14The full set of parameters is: n estimators (number of trees), min samples split (the minimum number of ob-
servations required to split an internal node), min samples leaf (the minimum number of samples required at a leaf
node), max features (the number of features to consider when looking for the best split), max depth (the maximum
tree length), and whether bootstrap samples are used when building trees or the full dataset is used for each tree.
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a randomized search across parameter values evaluated by a randomized cross-fold validation to

avoid misjudgment; we use the ‘scikit learn’ library in python that picks parameters that maximize

the out-of-sample R2.

2.2.2 Performance

To judge performance, we retrain the model using data from 2012, as there is a partial overlap

between DMSP and VIIRS, and then compare the out-of-sample predictions for 2013 to the actual

DMSP values.15 The downgrading of VIIRS to the adjusted DMSP performs well both in absolute

terms and compared to the recent efforts of Li et al. (2020) and Nechaev et al. (2021). For the

global set of pixels, Figure 1 reports the results of our method’s out-of-sample performance (in

2013) and compares with Li et al. (2020) and Nechaev et al. (2021). In Appendix Figure A2, we

repeat the analysis for Africa only.

First, the left panels plot the scatters of the predicted values (in the vertical axis) against the

actual, blooming corrected, DMSP values (in the horizontal axis) for our method (panel a), the Li

et al. (2020) sigmoid function method (panel c), and the Nechaev et al. (2021) convolutional neural

network approach (panel e). Our method’s root mean square error (RMSE) is 1.50, considerably

lower than the 3.27 of the approach of Li et al. (2020) and lower than the 1.57 of Nechaev et al.

(2021).16 Our method performs better across the luminosity distribution but especially at the

low to middle end, a feature particularly useful when studying regions in a low-income or (lower)

middle-income setting.

Second, because low-light regions are common in Africa and many papers apply binary trans-

formations, we also examine performance at the extensive margin. Panels (b), (d), and (f) report

“confusion matrices” of lit and unlit pixels with the three methods. The rows correspond to ac-

tual adjusted DMSP values, and the columns to out-of-sample predicted DMSP values for 2013.

The top-left counts pixels classified correctly as unlit, and the bottom-right counts pixels cor-

rectly classified as lit. For our method, the share of lit pixels correctly classified (recall) is 0.95

[17634634/(17634634 + 998461)]; the share of all predicted as lit pixels correctly classified (pre-

cision) is 0.58 [17634634/(17634634 + 12872108)]. These statistics depend on the distribution of

lit and unlit pixels, which is highly skewed. The actual share of lit pixels is just 8.6%. Simply

15The only full (12 months) year where both Version 4 DMSP-OLS and VIIRS data are available is 2013. In
2012, the two datasets overlapped for eight months. For this reason, we use 2013 to train our main model (best
overlap). We use 2012 to retrain our model for the out-of-sample performance check, as this gives us an estimate of
model performance with partial training data. The Appendix shows no discontinuities between 2012 and 2013, the
years of the DMSP and VIIRS overlap. Appendix Figure A1 uncovers a strong co-evolution between the harmonized
luminosity series and the share of the population with electricity in Mozambique, Kenya, the Democratic Republic
of Congo, Ghana, Tanzania, and Nigeria without a jump when moving from DMSP to VIIRS (see also Henderson
et al. (2012)).

16Results are similar for Africa (Appendix Figure A2), albeit with lower absolute values due to lower lights: Our
method’s RMSE is 0.715 vs 3.10 for Li et al. (2020) and 0.727 for Nechaev et al. (2021).
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classifying all pixels as lit would get a recall score of 100%, but a precision of just 8.6%. The figure

thus also reports the F1 score, a widely used metric to evaluate the success of binary classifiers

when one class is rare (Lipton et al., 2014). The F1 score takes the harmonic mean of the recall

and precision scores; F1 = 2∗ recall ∗precision/(recall+precision). Higher F1, bounded between

0 and 1, indicates a better accuracy. Our method yields an F1 of 0.72, much higher than the 0.51

of the sigmoid approach and slightly higher than the 0.71 of the CNN approach.17

3 Cross-Country Patterns

While our focus is on the use of lights to capture local economic activity, we begin the analysis

examining the cross-country association between nighttime luminosity and GDP for a global set

of countries, using data from the World Bank’s World Development Indicators Database.18 Since

much of our focus is on Africa, we repeat our analyses for African countries in Appendix Section

B.1; see Appendix Figure B3 and Appendix Tables B3-B6.

Cross-sectional Association Figure 2 Panels (a) and (b) illustrate the strong cross-sectional

association between GDP and the sum of the harmonized nighttime lights in 2005 (adjusted DMSP)

and 2015 (downgraded VIIRS to the adjusted DMSP). Appendix Table B2 - Panel A explores in

more detail the cross-sectional association. The highly significant coefficient shows that luminosity

is a good output proxy across 173 countries. The fit is strong in both periods with an adjusted R2

around 0.9. The elasticity is stable across periods (around 0.85); in Africa, the elasticity is 0.7, and

the R2 is around 0.9.

Within-Country over Time Association We run panel and long-run differences specifications

to examine the dynamic association between nighttime lights and GDP. Figure 2 - Panels (c)

and (d) plot the association between changes in GDP and the adjusted and harmonized series

over 1992 − 2019 (to avoid capturing the pandemic and the recovery) and over 1992 − 2013, the

DMSP period. The highly significant elasticity is similar over both periods, around 0.25 and

0.24, respectively (median regression estimates are identical). These estimates are similar, though

slightly lower, to the ones [0.30− 0.33] reported by Henderson et al. (2012) across 188 countries for

1992/3− 2005/6.19 Panel (e) illustrates the panel association at the yearly frequency, plotting the

residuals of GDP and luminosity, netting out country and year constants. As the noise in GDP and

nighttime lights gets magnified at the yearly frequency, panel (f) gives the elasticity using five-year

17Results on F1 scores are slightly better for Africa (see Appendix Figure A2): The F1 of our ensemble method is
0.77, while for the sigmoid function approach is 0.17 and 0.75 for Convolutional Neural Networks method.

18We require that every country is observed in the DMSP and the VIIRS era. We drop Equatorial Guinea, an
evident outlier; see also Henderson et al. (2012).

19Our specification in panels (c) and (d) are comparable to Table 3 column (4) in Henderson et al. (2012), with an
estimate of 0.32.
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averages of GDP and luminosity. The elasticity is around 0.15−17 with the merged series. Besides,

as shown in the Appendix, the estimates with the adjusted light series are not dissimilar to the

unadjusted ones in the global and African samples.

Finally, to grasp what is lost when downgrading and merging VIIRS to DMSP, we have run

the 2014-2019 ‘long-difference’ regressions. With the original VIIRS data, the long-run difference

GDP-luminosity long-run elasticity is 0.4 (0.076) for Africa, and 0.15 (0.057) for the global sample.

With the downgraded series, it is 0.35 (0.094) for Africa, and 0.19 (0.046) across the 173 countries.

4 Local African Development

As applied research on African (long-run) development, economic history, and political economy has

moved over the past years from cross-country approaches to designs that exploit spatial variation

within countries (Michalopoulos and Papaioannou, 2018), we explore the potential of luminosity

to capture well-being across African regions using georeferenced Demographic and Health Surveys

(DHS).20 As research moves from coarser units (like admin-1 units) to finer, more granular units,

we explore the cross-sectional and dynamic patterns across spatial units of various sizes. Across

all tests, we compare the newly compiled adjusted and merged VIIRS-DSMP lights series with

unadjusted ones, as doing so illustrates a part of our contribution.

4.1 Data and Specification

We obtained all geo-referenced Demographic and Health Surveys from Africa. Appendix Table

B7 reports the country-survey years, while Appendix Table B8 gives summary statistics. The 34

countries are from all parts of the continent, relatively richer and poorer, former British, French,

Belgian, and German colonies. Most surveys were conducted in the 2000s and 2010s, but we also

have over a dozen surveys in the 1990s. We extract four development indicators: the mean years

of schooling of respondents aged 15-39 (Adult Years Schl.),21 the mean DHS composite household

wealth index (Wealth Index ),22 the share of households with access to improved sanitation (Im-

proved Sanitation),23 and the share of households with an electricity connection (HH has Elect.).

The geo-referenced DHS gives information across survey clusters (enumeration areas), typically

cities, towns, and villages. We create an arbitrary grid of Africa, where each gridcell has a resolution

20This follows a considerable body of research that uses DHS data to proxy African development; see, for example,
Young (2012), Lu and Vogl (2023), Lowes and Montero (2021b), Ashraf et al. (2020), Fenske (2015), Michalopoulos
and Papaioannou (2016), and Michalopoulos and Papaioannou (2020) for a review.

21We choose the 15-39 age range because, in the panel specifications, we want to capture the ‘flow’ of education.
We get similar results using an upper age of 65.

22The index is based on a principal component aggregation of household characteristics like the quality of the
household roof and the ownership of assets.

23The DHS definition of improved sanitation includes flush toilets to sewers, septic tanks, and also ventilated and
slab pit latrines, while unimproved includes open pits, bucket toilets, and open defecation.
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of 900 arc seconds, 30 times the resolution of the DMSP pixels; therefore, each gridcell contains

900 DMSP pixels. At the equator, this corresponds to a grid of 28km by 28km; see Appendix

Figure B4 for an example. We then aggregate the DHS data to these gridcells by matching the

DHS cluster to the gridcell where their GPS coordinate falls, then aggregate by cell-year.

We associate the development proxies with luminosity, running the following specification:

Yg,c,t = βNLg,c,t + γln(area)g + µc(g),t[+δg] + ϵg,c,t (1)

Yg,c,t denotes the average of the socio-economic outcome (e.g., schooling, composite wealth

index, access to electricity) in gridcell g in country c, in a survey conducted in year t. To enable

coefficient comparisons, we standardize all outcomes to have a mean of zero and a standard deviation

of one.24 NLg,c,t is either the log sum of nightlights plus half of the minimum positive value or

an indicator that equals one if the gridcell is lit. The specifications include country-year fixed

effects µc(g),t, as our objective is to explore the usefulness of luminosity in capturing regional

African development in a given country period. The cross-sectional specifications also control for

the logarithm of the gridcell’s/unit’s area, ln(area)g, which is absorbed by the unit fixed effects

[δg] in the panel estimation.

4.2 Cross-sectional Estimates

Figure 3 panels (a)-(b) plot the cross-sectional estimates with the adjusted series (red diamonds)

and the unadjusted ones (blue squares). Two results emerge. First, nightlights are a suitable proxy

for local development, as we obtain significant correlations across all specifications with both the

harmonized and adjusted series and the unadjusted ones. The estimates in panel (b) hover around

0.6, suggesting that lit areas have a little more than half a standard deviation higher schooling and

access to electricity and improved sanitation; the coefficient on the composite wealth index, which

minimizes error on household assets and public goods access, suggests differences of one standard

deviation. The correlation, however, is far from perfect as the binary luminosity index cannot fully

capture the considerable spatial variation in development (Appendix Figure B5). Second, with all

outcomes, we obtain more robust and less noisy correlations with the newly compiled, adjusted,

and merged VIIRS-DMSP series compared to the unadjusted ones. Appendix Figure B9 Panels

(a) and (b) examine this further by breaking down results by each type of luminosity correction.

Most gains come from the blooming rather than the topcoding correction, which is consistent with

our African context, where topcoding is rare. However, papers in other settings, countries, and

24Note that this standardization is done for the main text figures, which plot coefficients from models with different
development outcomes. For the appendix tables and figures with coefficients all from models with the same outcome,
outcomes are left in their native units.
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(sub)-continents might find that topcoding is more relevant. Finally, when we look at the intensive

margin of luminosity (panel a), all coefficients increase with the harmonized series, consistent with

a measurement error interpretation, as using less noisy explanatory variables yields less attenuated

estimates and a higher R2 (Wooldridge, 2010).

4.3 Panel Estimates

To examine the dynamic correlation between the DHS development proxies and luminosity, we

augmented the cross-sectional specification with gridcell fixed effects (δg). The panel specifications,

reported in panels (c) and (d) of Figure 3, yield positive coefficients. [Appendix Table B10 reports

the estimates for each adjustment separately.] The coefficients with the adjusted series are always

larger than the analogous ones with the unadjusted ones, telling of the reduction in measurement

error that our adjustments to the DMSP series and merging to the downgraded VIIRS achieve. For

example, the estimate for log lights in the specification with years of schooling is around 0.02 when

we use the newly compiled series, which is about double the coefficient of the unadjusted series.

Similar results hold when the outcome is the composite wealth index or the share of households in

the gridcell with electricity access. The comparison of the specifications examining the association

between development and the extensive margin of lights with the new and the unadjusted series

in panel (d) yields starker patterns. Most specifications with the unadjusted series yield small

and indistinguishable from zero estimates, while all permutations with the adjusted series yield

much larger and statistically significant correlations. These results align with the fact that error

in variables is often more significant when expressing the empirical model in differences. The

harmonized series suggests that mean years of schooling increase, on average, by 0.05 standard

deviations in gridcells turning lit, compared to unlit; this translates into 0.125 schooling years

(Appendix Table B10). When cells turn lit with the newly compiled series, the Wealth Index and

Electricity Access increase by around 0.05 standard deviations. Appendix Figure B9 Panels (c) and

(d) show that, similarly to the cross-sectional results, most of the improvement of the corrected

series comes from the blooming correction.

4.4 Further Evidence

4.4.1 Spatial Aggregation

Applied research uses luminosity data across spatial units of various sizes, some coarse (Alesina

et al., 2016 at admin-1 and admin-2 units and linguistic areas), some granular (Henderson et al.,

2018 at small grid-square level; Storeygard, 2016 at city-level). Figure 4 panels (a) and (b) provide

graphical illustrations of the luminosity-composite wealth index elasticity across spatial units of

various sizes (blocks of gridcells) to explore the implications of aggregation. The furthest to the left
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gives the coefficient from a specification across relatively small blocks, 2×2 (four gridcells). As one

moves towards the right along the x-axis, the data is aggregated into larger units, with the largest

12×12 (144 gridcells). The cross-sectional estimates in panel (a) are highly significant, around 0.18,

across all aggregation levels. All panel estimates in panel (b) are highly significant, showing that

luminosity approximates the variation in household asset changes and public goods access. The

coefficients are fairly stable across the aggregation levels, around 0.075, although slightly stronger

at larger spatial units. The estimates are almost always larger with the newly compiled adjusted

luminosity series (red diamonds) compared to the unadjusted (blue squares); this is especially the

case at the highest levels of spatial resolution, suggesting that the reduction in measurement error

becomes more important at more disaggregated levels. Research should use the harmonized series

and carefully consider measurement error as it moves into more granular analyses. In contrast,

aggregating light data to coarser spatial units reduces noise in the unadjusted light series; a pattern

that echoes the cross-country analyses showing minimal differences in GDP-luminosity elasticity

using the adjusted and unadjusted light series.

4.4.2 Local Variation

Researchers commonly use identification designs, such as local fixed effects models (Wantchekon

et al., 2015) or spatial RDD (Michalopoulos and Papaioannou, 2014; Lowes and Montero, 2021a),

to advance on causation by comparing proximate locations. We thus assess how well luminos-

ity captures local development, focusing on estimates within increasingly proximate areas. We

augment the empirical model with fixed effects of increasing spatial resolution (in the panel esti-

mates interacted with year constants) to partial out localized hard-to-account-for features related

to geography, ecology, and culture.

Figure 4 panels (c) and (d) plot the luminosity-wealth correlation with fixed effects of various

sizes. Moving along the x-axis, we plot estimates with larger (coarser) fixed effects. The furthest

to the left specification includes fixed-effects for blocks of 2× 2 (four gridcells); the furthest to the

right specification includes fixed-effects for blocks of 12 × 12 (144 gridcells). The cross-sectional

estimates (panel c) are stable; the coefficients with the adjusted series are around 0.17, slightly

larger than with the unadjusted series, about 0.15. The within-gridcell over time estimates in panel

(d) highlight the improvement from our adjustments. The coefficient with the harmonized and

adjusted series is significantly positive and very stable, although the proximity of the comparisons

changes considerably as the fixed-effects increase in size. Even when comparing nearby areas,

changes in luminosity correlate significantly with changes in household wealth. In contrast, the

coefficients of the unadjusted luminosity series are smaller and, until fixed effects are at least 7× 7

(roughly 200km × 200km at the equator), statistically indistinguishable from zero. As shown in

the Appendix Section B.2, the patterns are similar when using schooling and access to electricity
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to proxy local well-being. The adjustments to the luminosity series strengthen considerably the

cross-sectional and over time correlation with schooling and electricity access at granular levels of

disaggregation and when exploiting (very) localized variation.

4.4.3 Urban and Rural

Another issue with light data regards its accuracy in explaining well-being within urban and rural

areas. Figure 5 plots the luminosity coefficients for the development outcomes separately for urban

and rural households (using the DHS classification). All cross-sectional estimates are highly signif-

icant, suggesting that nighttime lights proxy well schooling, household wealth, and service access

across both urban (higher luminosity) and rural (lower luminosity) areas. Besides, the estimates

are similar in the rural and urban samples. There is some evidence that the adjustment is more

critical across rural areas. The panel specifications yield somewhat different patterns. First, the

coefficients are statistically significant only when using the newly compiled harmonized and ad-

justed for top-coding, blooming, and sensor calibration lights series. Second, the estimates of the

urban sample are consistently larger than those of the rural sample, showing that the development-

luminosity nexus is more substantial in urban areas, an asymmetry that echoes the recent findings

in India of Asher et al. (2021).

5 Country-Specific Case Studies

Many studies use luminosity from specific countries to explore various inquiries, such as the geo-

graphic impact of demonetization in India (Chodorow-Reich et al., 2020), landmine clearance in

Mozambique (Chiovelli et al., 2025), and the flattening of the government hierarchy in China (Li

et al., 2016). In this Section, we examine the development-luminosity nexus at a granular level,

focusing on low-income settings. First, we zoom in on Mozambique using Census data, which is

less noisy than surveys. Second, we look across dozens of thousands of Indonesian villages. Third,

we turn to more than half a million Indian rural and urban settlements.

5.1 Mozambique (Census-based Estimates)

We examine the association between the newly compiled luminosity series and local development

using all post-civil war Mozambican censuses that allow us to zoom in at high spatial resolution

with many observations25

Approach and Sample We estimate linear specifications across Mozambican administrative

units linking development to luminosity. We have retrieved, processed, and digitized the entire

25Recent work in Namibia shows that luminosity tracks local development better in census compared to survey
data (Maatta et al., 2022).
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censuses of 1997, 2007, and 2017, available across admin-4 level units. We estimate the following

specification:

Yi,t = βLi,t + γaln(area)i[+δi] + µj(i),t + ϵi,t (2)

Yi,t denotes the average years of schooling of Mozambicans 15-39 years and non-agriculture em-

ployment of 15-24 year-olds in administrative unit i in period t.26 Li,t is either the log sum of

nightlights plus half of the minimum positive value or a lit indicator. We include fixed effects for

year-by-admin unit (at various levels), µj(i),t. The cross-sectional specification also controls for

log geographic area, ln(area)i. Administrative unit fixed effects, δi, account for geography, loca-

tion, and other time-invariant factors in the panel estimation. Appendix Table B11 gives summary

statistics across 1, 126 admin-4 units (localities).

Cross-Sectional Estimates Figure 6 panels (a) and (b) report the cross-sectional estimates at

the locality level with the two transformations of luminosity. The specifications reveal a significant

luminosity-development correlation, further illustrating the usefulness of luminosity to approximate

localized differences in education and employment in the “modern” sector. Besides, the coefficients

with the harmonized and adjusted series are stronger than the analogous ones with the “unadjusted”

light data, showing the reduction in measurement error from blooming. Estimates imply that years

of schooling and employment in the modern sectors are (at least) half a standard deviation higher

in lit compared to unlit localities, about 0.5 years and 10 percentage points, respectively.

The luminosity-development correlation is also present when we add admin-3 unit fixed effects

(postos) to exploit localized variations across proximate localities. Appendix Tables B12-B13 re-

ports cross-sectional estimates also across 142 admin-2 areas (distritos), including (10) admin-1

(provinces) fixed effects and across 403 admin-3 units (postos), including admin-2 fixed effects.

Luminosity is a significant proxy of education and non-agriculture employment across all adminis-

trative splits. As with the DHS analysis, the improvement in estimates from the harmonized and

adjusted for top-coding, blooming, and sensor calibration series is mostly noticeable at finer spatial

resolution; when the units are large, then the adjustments do not matter much.

Dynamic Correlations Figure 6 panels (c) and (d) give panel estimates (with admin-4 unit

fixed effects) that explore the dynamic association between luminosity and development. Within-

locality changes in luminosity correlate significantly with swings in schooling and out-of-agriculture

employment. As shown in Appendix Tables B14-B15, the correlation is strong across all levels of

spatial aggregation. Luminosity co-moves with schooling and modern-sector employment even when

26Employment status is not available for the 2017 census, so any specifications with this outcome include only data
from 1997 and 2007. Also, similar to our years of schooling outcomes, we measure employment for the sample of
respondents aged 19-24 in order to better approximate changes in economic conditions in the panel estimation.
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we augment the specifications with interactions between census-year constants and admin-3 unit

fixed effects that allow us to zoom within geographically proximate areas and account for quite

localized unobserved trends. Besides, the panel estimates for non-agricultural employment are

considerably larger with the newly compiled fused VIIRS to the adjusted DMSP series. Appendix

Figure B10 illustrates the within-locality patterns plotting the increase in schooling years for four

groups of localities; initially (in 1997) unlit admin-4 units that either stay unlit (by 2007 or 2017)

or turn lit, and initially lit localities that either stay lit or turn unlit. The difference in schooling

is about half a year when comparing localities turning lit (from unlit) or staying lit (rather than

becoming unlit), even when we compare nearby localities with the inclusion of admin-3 fixed-effects.

5.2 Indonesia

Approach and Sample We then examine the link between luminosity and local development,

using very granular village-level data from Indonesia. We rely on the Village Potential Statistics

Census (PODES, Pendataan Potensi Desa), conducted every three to four years since 1996, and the

associated village-level shapefile from 2000.27 This high-quality dataset has been used to examine

the development and political economy impact of large school construction programs (Martinez-

Bravo, 2017), ethnic mixing’s role in nation-building (Bazzi et al., 2019), and administrative de-

centralization on local public goods (Cassidy and Velayudhan, 2025), among others. We use the

1996, 1999, 2002, 2005, 2008, 2011, 2014, and 2018 waves. Due to evolving village boundaries, some

villages could not be reliably merged across years. Nonetheless, we retain over 60, 000 villages.28

The PODES data help quantify the luminosity-development nexus at a very granular level. We

associate various public goods measures (presence of a primary, secondary school, or kindergarten,

access to drinking water, availability of doctors) with the log luminosity and an indicator for lit

areas. The specification always includes survey (year)-specific (3, 737) admin-3 fixed effects. The

cross-sectional specifications also condition on the log village area.29 As PODES includes various

potential outcomes, we aggregate them via principal components, making the estimates comparable

to those with the DHS wealth index.30 Appendix Table B16 gives summary statistics across 61, 601

villages.

27This data was kindly shared by Samuel Bazzi.
28The shapefile includes multiple polygons for some villages, particularly those on islands. These were consolidated

using administrative codes to ensure a single geometry per village. Some villages appear only in one dataset, with
4,679 unique to the shapefile and 410 unique to the survey. The shapefile does not cover the Papua province.

29The average (median) size of a village is 21.87 (5.68) km2 with a standard deviation of 80.25 .km2. The average
(median) village has a population of 3, 739.77 (2, 369) with a standard deviation of 5, 454.364, as recorded in 2011.

30The public goods and local development proxy measures include: binary measures for access to formal garbage
disposal, use of toilet facilities, access to drinking water, use of gas or electricity for cooking, and presence of paved
roads, and the number of kindergartens, primary, middle, and secondary schools.
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Results Figure 7 Panels (a)-(d) report the cross-sectional correlations between the various pub-

lic goods measures and the unadjusted and adjusted luminosity series. The top row correlates the

two luminosity series with the first principal component, which captures the overall level of public

goods.31 The correlation is highly significant with both nighttime lights series and both transfor-

mations of luminosity. However, the coefficient is much larger with the adjusted and harmonized

luminosity series, indicating a reduction in measurement error. The adjusted night light series

(almost) consistently outperforms the unadjusted version with all public goods proxies. The panel

estimates, reported in panels (c) and (d), also tell of the reduction in noise from the adjustments to

the DMSP series and its harmonization with the VIIRS. The coefficient on the adjusted nighttime

lights with the composite wealth index suggests a significantly positive correlation, while with the

unadjusted luminosity series, the estimate is, counterintuitively, negative. Turning to the various

public goods proxies, the estimate with the adjusted series is mostly positive and significant, while

this is rarely the case with the unadjusted luminosity.

5.3 India

Approach and Sample We then turn to India, relying on the recently compiled Socioeconomic

High-Resolution Rural-Urban Geographic Dataset on India (SHRUG), compiled by Asher et al.

(2021). This is a rich dataset recording various social, economic, political, and development fea-

tures for the universe, more than 550, 000 of municipalities (towns and villages) and legislative

constituencies in India. For example, the villages have a median population of about 832, and

the towns a median just short of 15, 000.32 This dataset –and some of its core components– have

been used to study the role of irrigation on structural transformation (Asher et al., 2023), the role

of transportation investments on education (Asher and Novosad, 2020), and the impact of local

government size on public goods (Narasimhan and Weaver, 2024).

We followed the luminosity validation in Asher et al. (2021) and examined the association

between various development proxies from the 1991, 2001, and 2011 Population Census of India

(population count) as well as variables from the 1990, 1998, 2005, and 2013 Economic Censuses (like

total non-farm, total manufacturing, and total services employment) and the logarithm of luminos-

ity.33 The specification always includes census (year)-specific admin-3 (subdistricts) fixed effects.

31All public goods measures load positively in the first principal component, which captures about a third of the
common variance, with an eigenvalue close to 3.5.

32The open-access geospatial data portal, maintained by the Development Data Lab
(https://www.devdatalab.org/), integrates many high-resolution socioeconomic, demographic, political, and
remote sensing data for over 600, 000 villages and towns with a harmonized spatial identifier from 1990 to 2018.

33In contrast to the original study (Asher et al., 2021), which used SHRUG version 1.5, we used the latest SHRUG
version 2.1 (Pakora 2.1) due to the unavailability of spatial data for version 1.5. Night light data is available from
1992 onwards thus we used the 1992 night light data to represent 1990 and 1991, to align with the PCA and EC data.
We have also dropped the variables on electrification, given the known “questionable relationship with the actual
availability of electricity,” reported in the SHRUG’s codebook. We merged our luminosity data using SHRUG’s
unique location identifiers.
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The cross-sectional specifications also condition on the log of the municipality area. Appendix

Table B17 Panel D reports descriptive statistics across the 550, 000 municipalities.

Results Figure 8 Panel (a)-(d) follows Table 3 and 4 from Asher et al. (2021). Panels (a) and (b)

present the cross-sectional estimates of the log luminosity at the town (urban) and village (rural)

levels, respectively. Panels (c) and (d) give the corresponding panel estimates. With the exception of

the cross-section in the urban areas where the unadjusted series delivers larger coefficient estimates,

across most outcomes, especially non-farm, manufacturing, and services employment, the adjusted

series regressions yield economically and statistically stronger associations, suggesting a stronger

link between luminosity and economic activity. This likely reflects improved measurement accuracy

in the adjusted data, which explicitly corrects for blooming and top-coding issues that may have

attenuated estimates in the original DMSP series.

6 Applications

We now re-examine three papers that proxy local African and global development with luminosity

due to the unavailability of regional data on income/output.

6.1 Precolonial Ethnic Institutions and Contemporary African Development

Inquiry and Approach Michalopoulos and Papaioannou (2013) examine the within-country

long-run correlation between precolonial political centralization and contemporary regional devel-

opment, blending ethnographic information (from Murdock (1959, 1967)) on ethnicities’ political

organization and their spatial distribution at the onset of European colonization, and luminosity,

conditioning on country constants, geographical, locational, and ecological features. Table 1 repli-

cates their core results, spanning 682 country-ethnic homelands. Michalopoulos and Papaioannou

(2013) use the (logarithm of) mean luminosity value in 2007 and 2008, using the original DMSP

series without any adjustment. The primary explanatory variable is an ordered index proxying

ethnic level jurisdictional hierarchy beyond the local level. The measure equals zero for acephalous,

fragmented societies only organized at the village/settlement level; one and two indicate petty and

large chiefdoms, while three and four indicate kingdoms and large states. Following Gennaioli and

Rainer (2007), they also use a binary political centralization index where one indicates politically

centralized ethnic groups (large chiefdoms and states) and zero indicates non-centralized groups

and those organized as small chiefdoms.

Results In Table 1, we compare their findings using the raw DMSP/OLS series to results based

on the adjusted series. The dependent variable is the logarithm of average luminosity, defined
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as log(0.01 + mean luminosity) at the country-ethnic homeland level.34 Columns (1) and (2)

reproduce the original estimates using the jurisdictional hierarchy index and a binary measure

of political centralization (columns (4) and (8) in the original paper, respectively), conditioning

on country constants, the log population density, and a rich set of geographic controls. Within

African countries, one sees higher levels of local development, as reflected in nighttime lights, in

the ancestral homelands of politically centralized groups.35 Columns (3) and (4) report otherwise

identical specifications, using the adjusted for sensor inter-calibration, top-coding, and blooming

DMSP series in 2007-2008. The coefficients on the 0 − 4 jurisdictional hierarchy index and the

binary political centralization are highly significant. The adjustment of the luminosity series is not

associated with a major change in the estimates’ economic effect; the coefficients are somewhat

smaller, but luminosity is also on average smaller as the new series adjust for blooming and, hence,

the number (share) of unlit country-ethnic observations increases from 164 (24%) to 197 (29%).

The fact that the raw DMSP-OLS and the adjusted DMSP series yield similar results is not

surprising, as the analysis’s units (country-ethnic areas) are very large (the average (median) area is

25, 547 (9, 327) squared kilometers) and, as such, the adjustments do not matter much as the noise

“averages out”. Columns (6)-(8) extend the analysis to the whole 1992–2023 period. Looking at a

longer horizon assuages concerns that the estimates pick up idiosyncrasies in 2007 and 2008; besides,

there are fewer observations with zero lights (12%), and hence the logarithmic transformation is

more appropriate. Across all specifications, the coefficients on the proxies of precolonial political

centralization retain economic and statistical significance. Since the country-ethnic homelands are

pretty large, the results with the adjusted and unadjusted series are similar.

6.2 National Institutions and Sub-national Development in Africa

Inquiry and Approach Michalopoulos and Papaioannou (2014) examine the link between na-

tional institutions and regional development in Africa, exploiting the fact that African borders,

designed in late 19th century in European capitals at a time when imperial powers had limited

knowledge of local conditions, partitioned many ethnic groups at independence. By overlaying

Murdock (1959) map delineating the historical homelands of 825 ethnic groups at the onset of

colonization with contemporary country borders, which to a large extent, follow colonial ones,

they identify 220 systematically partitioned ethnic groups (where at least 20% of a group’s home-

land falls into more than two countries). Michalopoulos and Papaioannou (2014) then associate

country-ethnic regional development, as reflected in DMSP nighttime lights series (in 2007-2008), to

34As in the original analysis, standard errors are double-clustered across countries and ethno-linguistic families.
35Murdock’s data are noisy and unavailable for some parts of the continent. Michalopoulos and Papaioannou (2015)

show that the strong correlation between luminosity and precolonial political statehood emerges with an alternative
to Murdock’s proxies of political centralization. Besides, the correlation strengthens in areas far from the capital
cities, as there national institutions appear to matter more (Michalopoulos and Papaioannou, 2014).
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national institutions proxies, conditioning on ethnic homeland fixed-effects. By exploiting within-

ethnicity variation, their design accounts for cultural and geographic differences, which are strong

cross-country correlates of GDP and national institutions. Besides analyzing country-ethnic (large)

regions, they also run spatial RDD models, narrowing the comparison to grid squares of 0.125 ×

0.125 decimal degrees.

Their analysis yields three results. First, when pooling across all partitioned ethnic areas,

national institutions do not systematically correlate with local development/luminosity. Second,

the null average effect masks considerable heterogeneity. Third, proximity to the capital, coupled

with the weak state capacity of African states and their chronic inability to broadcast power

in the periphery, partly explains the weak association between national institutions and at-the-

border development. When zooming into split ethnic homelands where both areas are close to

the respective capital cities, a significant correlation between national institutions and regional

development emerges.

Results Table 2 reexamines some of the results, comparing the estimates with the original raw

DMSP-OLS (Panel A) and the adjusted ones (Panel B). The dependent variable takes the value of

one when the gridcell belonging to the ancestral homeland of partitioned ethnic groups is lit and zero

otherwise. As misclassifications in binary outcome variables always yield non-classical measurement

error (e.g., Aigner (1973), Meyer and Mittag (2017)), Panel C pools all yearly observations from

1992-2023 with the adjusted and harmonized series, as this accounts for noise in the outcome

variable and reduces the number of zeros (the share of lit pixels doubles). Columns (1)-(2) report

specifications across all gridcells of partitioned ethnic homelands (analogous to Table IV-Panel B,

Columns (1) and (2) of the paper). Column (1) conditions on the pixel log land area and population.

The cross-sectional specifications with both the original and the adjusted for blooming, sensor

quality, and top coding series yield significantly positive coefficients, suggesting that a one-point

increase in the rule-of-law index (which ranges globally from −2.5 to 2.5) moves in tandem with

a ten percentage points higher likelihood that the gridcell will be lit. Column (2) adds the fixed

effects of the ethnic homeland, which allow for a comparison of the regional development of the

partitioned areas of the same ethnicity. The within-ethnicity coefficient drops by more than half,

to about 0.025. With the adjusted series, the estimate passes (marginally) the 90% statistical

significance cutoff, illustrating the benefits of the noise reduction the new series achieves; with the

unadjusted series, the estimate’s p-value (t-stat) was around 0.15 (1.55). Columns (3)-(4) report

local regressions that restrict the estimation to gridcells within 50km from each side of the border

(Table V-Panel B Column (1) and (2) of the paper).

The significantly positive cross-sectional coefficient (in (3)) drops considerably when adding

the ethnicity constants, implying much weaker economic effects. The within-ethnicity estimate
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is statistically indistinguishable from zero with the “raw” DMSP lights data (column (4)). The

estimate is larger and weakly (at the 90%) significant with the adjusted luminosity series that

reduces noise. Columns (5)-(6) give pooled across all split ethnic homelands spatial RDD estimates

(adding an ethnic-country-specific third and fourth order RD polynomial on distance to the border),

which approximate the effect of national institutions at the border (Table VI Panel A Columns (3)

and (4) in the paper). The RD estimates are small and statistically insignificant for both luminosity

series, suggesting that the economic impact of national institutions at the African border is, on

average, small.

In columns (7)-(8), we distinguish between split ethnic groups where both partitioned areas are

relatively close to the respective capital cities and those where both ethnic regions are far from the

capitals (Table VIII Panel B Columns (5) and (6) in the paper). The analysis with the unadjusted

luminosity series in Panel A yields a positive and marginally significant coefficient for partitioned

ethnic homelands where both split areas are close to the respective capitals. The estimate with the

adjusted series (in Panel B) yields a much more precise estimate. The estimate is highly significant

when pooling across all years (1992 − 2023), implying that national institutions matter for local

development when looking at areas not far from the capitals. However, when looking at areas far

from the respective capitals, the correlation between national institutions and local luminosity is

nil, both with the unadjusted and the less noisy adjusted and harmonized across satellite systems

series.

6.3 Regional Favoritism

Inquiry and Approach Hodler and Raschky (2014) take a systematic global viewpoint on

regional favoritism, which numerous case studies reveal in specific settings. They examine how

development changes at the birthplace of national leaders when they take on power or leave office.

Their design exploits yearly variation in luminosity and national leaders’ home-place (from the

Archigos database) across 38, 427 subnational regions from 126 countries from 1992 to 2009. Their

panel specification conditions on region fixed-effects, which absorb geographic, locational, and other

time-invariant factors, and country-year fixed-effects, which account for the impact of all national

policies and institutions. Hodler and Raschky (2014) show that, controlling for local regional

features and the general yearly developments in the country, the luminosity of leaders’ home region

increases (falls) when they take on (leave) office. In addition, this result is pronounced in countries

with weak institutions and low human capital, and years of sizable foreign aid flows.36

36In subsequent work, Luca et al. (2018) show similar patterns of ethnic favoritism with nighttime luminosity
intensity increasing by 7− 10% in the national leaders’ ethnic homelands
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Results Table 3 reassesses their influential results with both the original raw DMSP-OLS and the

adjusted luminosity series; a nice feature for our purposes of their study is the fact that they exploit

within-region over-time variation, which often magnifies error-in-variables. Panel (a) reproduces the

main results of Hodler and Raschky (2014) (Table 2 in the original paper) with the raw DMSP-OLS

luminosity series. The authors take a log transformation of luminosity after adding a small number

to avoid losing data from regions where the satellites do not detect any lights. We retain the original

paper’s clustering at the leader’s level. A statistically positive within-region association emerges

across all permutations (controlling for inertia in nighttime lights, the leader’s role, and population).

The linear probability model estimate in column (6) suggests an increase in the likelihood that the

leader’s hometown is lit of about three percentage points in the year after the leader gets into

power. Panel (b) gives identical specifications but with the adjustments for top-coding, sensor

inter-calibration, and blooming DMSP series. In line with the original analysis, the coefficients

on the leader’s home region are always positive and at least two standard errors larger than zero.

This applies in all permutations. The coefficients are larger and more precisely estimated. For

example, in specification (1), the coefficient on the lagged leader increases from 0.038 to 0.058.

Similar gains in magnitude and precision are evident across most specifications.37 The adjustment

in the linear probability model estimates in (7) is important as a binary transformation of a noisy

outcome measure yields non-classical measurement error (e.g., Aigner (1973), Meyer and Mittag

(2017)). The coefficient on the (lagged) leader suggests a seven percentage point higher likelihood

of his/her birthplace being lit after he/she resumes office, much higher than the analogous estimate

with the plain/raw nighttime lights series. Overall, the adjusted series, if anything, strengthens the

evidence for regional favoritism by political leaders, likely due to improvements in spatial accuracy

and correction for light “blooming, making the signals of localized development more distinct and

robust.

7 Conclusion

While satellite nighttime lights have gained widespread popularity in applied research, it is still

unclear when and where the luminosity data is a dependable proxy of economic development. The

debate is especially pertinent in high-resolution analyses in low-development regions, where a signif-

icant pixel share is dark. But it is in low-income areas that satellite imagery is a priori needed, as in

such environments there is limited high-quality data. Accounting for noise in the nighttime light se-

ries is especially relevant in low-development regions and high levels of granularity, as measurement

error is more pertinent, and not necessarily classical, when applying binary transformations.

37Notably, specification (6), which drops zero-luminosity regions due to the log transformation without a constant,
shows a slight discrepancy in the number of observations across panels, reflecting differences in the density of non-zero
grid squares between datasets.
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In the first part, we compile a novel annual series of gridded global nighttime light data at a

spatial resolution of 30 arc seconds (roughly one square kilometer at the equator). Employing en-

semble ML methods, we standardize luminosity data from various satellites with sensors of differing

resolutions and accuracy. The new series accounts for various intricacies related to variations in

sensor quality, top-coding, blooming phenomena, and the transition from the DMSP-OLS to the

VIIRS satellite systems in 2013.

The second part of our study explores the relationship between luminosity and local development

proxies such as education, household wealth, sectoral employment, and access to public services.

We commence the validation analysis drawing upon geo-referenced survey data from 34 African

countries. By harnessing both cross-sectional and temporal variation, we show that the newly

harmonized luminosity series effectively encapsulates local African development (dynamics). This

holds even at highly granular levels, where the challenge of excess-zero observations is pronounced.

The adjusted and harmonized luminosity series correlate much more strongly with all development

proxies, even more so in changes, at granular levels, and when exploiting localized variation, telling

of the reduction in measurement error that the newly compiled series achieves. We then zoom

into three (large) countries: Mozambique, using all post-independence Censuses (1997, 2007, 2017);

Indonesia, using a rich administrative triennial survey of public goods spanning over 60, 000 villages

since the mid-1990s; and India, relying on a recently compiled dataset recording local employment

across more than half a million villages and towns. Although the settings, development proxies,

and data collection differ, the country-level analyses yield similar patterns. While the correlations

are far from perfect, the newly compiled adjusted data for top-coding, sensor inter-calibration, and

blooming and harmonized across satellites are significant correlates of local development and public

goods. The adjustments yield stronger (cross-sectional and over-time) correlations when focusing

on proximate districts and villages.

Lastly, we re-examine the baseline results of Michalopoulos and Papaioannou (2013, 2014)

on the lasting importance of precolonial ethnic political institutions on contemporary African re-

gional development alongside the small role of national institutions within split-by-the-border ethnic

homelands, and the findings of Hodler and Raschky (2014) on regional favoritism across the world

with the newly compiled luminosity series. The significantly positive (within-country) associa-

tion between precolonial political centralization and regional development across ancestral ethnic

homelands is similarly strong with the adjusted and the unadjusted series; as the county-ethnic

homelands are large, the various adjustments do not matter much. With the less noisy adjusted lu-

minosity series, the overall weak correlation between national institutions proxies and development

across split ethnic homelands somewhat strengthens, although the effect at the border continues to

be tiny and statistically insignificant. We also reaffirm with the new luminosity series the results

of Hodler and Raschky (2014) showing an increase in luminosity and a higher likelihood of being
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lit at the national leaders’ home districts, once they take office. If anything, the panel correlations

strengthen with the adjusted and harmonized series, telling of the reduction in noise, often more

relevant when exploiting within-region over-time variation.

We view our work as offering insights into the ongoing discourse concerning the reliability and

utility of satellite nighttime light data in proxying economic development and local public goods

in regions grappling with data limitations. However, while satellite imagery of nighttime lights

appears helpful in reflecting local well-being across granular low-income settings, the correlations

are far from perfect. Besides, as more satellite data are becoming available to researchers, future

research can blend the newly compiled nighttime lights series with other granular satellite data, such

as daytime economic activity (traffic) and imagery of structures, to provide high-quality mappings

of well-being in low-income settings.
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Figure 1: Mapping Nighttime Lights. Global VIIRS and DMSP in 2013

Extremely Randomized Trees (Ensemble Method)
(a) Scatter Ensemble Method (b) Confusion Matrix Ensemble Method

Sigmoid Function Approach Li et al. (2020)
(c) Scatter Sigmoid ‘DMSP-like’ (d) Confusion Matrix Sigmoid ‘DMSP-like’

Convolutional Neural Network Approach Nechaev et al. (2021)
(e) Scatter Neural Network ‘DVNL’ (f) Confusion Matrix Neural Network ‘DVNL’

This figure gives illustrations of the pixel-level mapping of downgraded VIIRS to original DMSP in 2013. Panels

(a)-(b) report estimates with our extremely randomized trees, ensemble method. The downgraded data presented

here are from a model trained in 2012 (when VIIRS data is available for only part of the year) and predicted

‘out-of-sample’ in 2013 (when VIIRS data is available for the full year). Panels (c)-(b) give estimates with the

sigmoid function of Li et al. (2020) that yields ‘DMSP-like’ downgraded VIIRS series. Panels (e) and (f) give the

tabulation of the convolutional neural network method of Nechaev et al. (2021), ‘DVNL’. Panels (b), (d), and (f)

give confusion matrices looking at the extensive margin of luminosity in 2013.31



Figure 2: GDP-Luminosity Elasticity. Global Country-level Estimates

(a) Cross-sectional - log GDP 2005 (b) Cross-sectional - log GDP 2015

(c) Long-Differences - ∆ 1992-2019 (d) Long-Differences - ∆ 1992-2013

(e) Panel Estimates - Annual (f) Panel Estimates - 5-year

Panels (a) and (b) plot the cross-country association between the log of GDP and the log of nighttime lights (lu-

minosity) across all countries in 2005 (DMSP period) and in 2015 (VIIRS period), alongside the LS regression line

(solid line) and the median regression line (dashed). Panels (c) and (d) plot the long-difference association between

log GDP and log luminosity over 2019-1992 and 2013-1992, respectively. Countries in panels (a) - (d) are colored

according to their broad global region (North America, South America, Europe, Asia and Oceania, and Africa).

Panels (e) and (f) plot the panel association between log GDP and the log nighttime lights (luminosity) across all

countries and years during the period 1992-2019. Panel (e) uses all observations; panel (f) uses five-year average

values. The panels plot the residuals of log GDP and log luminosity on country fixed-effects and year fixed-effects.

Blue dots indicate country-year residuals during 1992-2012 (DMSP period) and the red dots indicate residuals during

2013-2019 (VIIRS period). All specifications use the (logarithm of the) newly compiled luminosity series harmonized

VIIRS-DMSP after adjusting the DMSP data for top coding, sensor calibration, and blooming.
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Figure 3: Local (standardized) Development-Luminosity Correlation. DHS Analysis

(a) Cross-sectional Estimates - Log Nightlights (b) Cross-sectional Estimates - Lit Indicator

(c) Panel Estimates - Log Nightlights (d) Panel Estimates - Lit Indicator

The figure plots coefficients from regressions associating proxies of development from the Demographic and Health

Surveys (DHS) on night-time lights (luminosity). All outcomes are standardized to have a mean of zero and a

standard deviation of one. Panels (a) and (c) use log luminosity; panels (b) and (d) use an indicator that equals one

when the gridcell is lit and zero otherwise. Panels (a) and (b) control for country-survey-year fixed effects and log

cell area. Panels (c) and (d) also include gridcell fixed effects. The unit of analysis is always gridcell-years. The bars

give 95% confidence intervals based on standard errors clustered at the gridcell level.
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Figure 4: Household Wealth-Luminosity Correlation. Further Evidence

(a) Cross-sectional, Varying Spatial Unit Size (b) Panel Estimates, Varying Spatial Unit size

(c) Cross-sectional, Varying Fixed-Effects Size (d) Panel Estimates, Varying Fixed-Effects Size

The figure plots coefficients from regressions associating the DHS Composite Wealth Index on Log Luminosity. Panels

(a) and (c) give cross-sectional estimates with country-survey year constants, controlling also for the gridcell’s log

land area. Panels (b) and (d) give panel estimates that, besides the country-year constants, also include gridcell fixed

effects. Panels (a)-(b) plot coefficients of log luminosity varying the (gridcell) size unit of the empirical analysis. Panel

(c) plots cross-sectional coefficients of log luminosity holding gridcell size fixed and augmenting the specification with

block fixed effects of increasing size. Panel (d) plots panel coefficients of log luminosity augmenting the specification

with interactions between country-survey-year constants with block fixed effects of increasing sizes. Red markers

denote estimates using the harmonized VIIRS-DMSP luminosity series, adjusting the DMSP for top coding, sensor

calibration, and blooming. Blue markers denote estimates using the unadjusted merged VIIRS-DMSP luminosity

series. The bars denote 95% confidence intervals, based on standard errors clustered at the gridcell level for panels

(c) and (d) and at the spatial unit level for panels (a) and (b).
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Figure 5: Local (standardized) Development - Luminosity Association. Urban and Rural Areas

(a) Cross-section - Log Nightlights (b) Cross-section - Lit dummy

(c) Panel - Log Nightlights (d) Panel - Lit dummy

Notes: This figure plots coefficients from regressions of standardized DHS measures on nightlights. All outcomes are

standardized to have a mean of zero and a standard deviation of one. For the luminosity variables, panels (a) and (c)

use log nightlights and panels (b) and (d) use an indicator equal to one for positive lights and zero otherwise. The

top panels (a) and (b) control for country by year fixed effects. Panels (a) and (b) control for log gridcell area, while

panels (c) and (d) control for gridcell fixed effects. In each panel, estimates from the subset of urban gridcells (red

diamonds) are compared with estimates from the subset of rural gridcells (blue squares). The solid markers denote

estimates using our corrected nightlight series, and hollow markers denote estimates using the unadjusted series. The

bars represent 95% confidence intervals, and standard errors are clustered at the gridcell level.
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Figure 6: Luminosity and (standardized) Local Development. Mozambique Census Analysis

(a) Log NL (cross-section) (b) Lit/Unlit (cross-section)

(c) Log NL (panel) (d) Lit/Unlit (panel)

The figure plots coefficients from regressions associating mean years of schooling of individuals aged 15-39 and

employment outside agriculture (in services, manufacturing, and mining) of individuals aged 15-24 with night-time

lights luminosity across Mozambican localities, level-4 administrative units. The outcomes are standardized to have

a mean of zero and a standard deviation of one. Panels (a) and (c) use the natural logarithm of nightlights, adding

a small number. Panels (b) and (d) employ a luminosity indicator variable that equals one if the administrative

unit is lit and zero otherwise. Schooling years are computed for all three Mozambican censuses (1997, 2007, and

2017). The share of non-agricultural employment is calculated using the 1997 and 2007 censuses. Panels (a) and

(b) give cross-sectional estimates. Solid red diamonds and solid blue squares condition on the log admin area and

year constants. The hollow circle/square also conditions on interactions between year constants and admin-3 fixed

effects. Panels (c) and (d) give panel estimates with locality (admin-4) fixed-effects and year constants. The hollow

circle/square specifications also condition on interactions between year constants and admin-3 fixed effects. The bars

represent 95% confidence intervals, and standard errors are clustered at the admin-3 level.
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Figure 7: Local (standardized) Development - Luminosity Association. Indonesia (PODES)

(a) Cross-section - Log Nightlights (b) Cross-section - Lit dummy

(c) Panel - Log Nightlights (d) Panel - Lit dummy

Notes: This figure plots coefficients from regressions of PODES measures on nightlights at the village (DESA) admin-

4 level. The outcomes are standardized to have a mean of zero and a standard deviation of one. For the luminosity

variables, panels (a) and (c) use log nightlights, adding a small number, and panels (b) and (d) use an indicator equal

to one for positive lights and zero otherwise. Panels (a) and (b) control for log village area and admin-3 × period

fixed effects, while panels (c) and (d) control for village and admin-3 × period fixed effects. The red diamonds denote

estimates using our corrected nightlight series, and blue squares denote estimates using the unadjusted series. The

bars represent 95% confidence intervals, and standard errors are clustered at the village level.
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Figure 8: Local Development - Luminosity Association. India (SHRUG). Villages and Towns

(a) Cross-Section. Town (urban) level (b) Cross-Section. Village (rural) level

(c) Panel. Town (Urban) Level. (d) Panel. Village (Rural) Level.

Notes: This figure plots coefficients from regressions of SHRUG measures on nightlights at the town (urban) and

village (rural) level. For the luminosity variables, all panels use log nightlights. Panels (a) and (b) control for log

town (village) area and admin-3 (subdistrict) × period fixed effects, while panels (c) and (d) control for town (village)

and admin-3 × period fixed effects. The red diamonds denote estimates using our corrected nightlight series, and

blue squares denote estimates using the unadjusted series. The bars represent 95% confidence intervals, and standard

errors are clustered at the town (village level).
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Table 1: Precolonial Political Institutions and Contemporary African Development
Michalopoulos and Papaioannou (2013)

(1) (2) (3) (4) (5) (6)
Original Original Adjusted Adjusted Adjusted Adjusted
Data Data 07/08 07/08 92/23 92/23

Jurisdictional Hierarchy 0.1766*** 0.1471*** 0.1341***
(0.0501) (0.0453) (0.0512)

Binary Political Centralization 0.3086*** 0.2376*** 0.2183**
(0.0972) (0.0893) (0.0962)

Adj. R-squared 0.661 0.659 0.620 0.617 0.645 0.643
N 682 682 682 682 682 682
Mean Dep. Var. -2.951 -2.951 -3.537 -3.537 -3.351 -3.351
SD Dep. Var 1.697 1.697 1.407 1.407 1.474 1.474
Non-lit obs. 164 164 197 197 81 81
Country Fixed Effects Yes Yes Yes Yes Yes Yes
Location Controls Yes Yes Yes Yes Yes Yes
Geographic Controls Yes Yes Yes Yes Yes Yes
Population Density Yes Yes Yes Yes Yes Yes

Notes: The Table reports within-country OLS estimates associating regional development with pre-colonial ethnic

institutions. The dependent variable is the log (0.01 + light density at night from satellite) at the ethnicity-country

level. In columns (1) and (2), we use the original luminosity data employed by the authors (raw DMSP-OLS): average

luminosity in 2007 and 2008. In columns (3) to (6), we use the adjusted DMSP-VIIRs series: average luminosity

in 2007 and 2008 (columns (3) and (4)) and average luminosity between 1992 and 2023 (columns (5) and (6). In

columns (1), (3), and (5), we measure pre-colonial ethnic institutions using Murdock’s (1967) jurisdictional hierarchy

beyond the local community index. In columns (2), (4), and (6), we use a binary political centralization index that

is based on Murdock’s (1967) jurisdictional hierarchy beyond the local community variable. Following Gennaioli and

Rainer (2007), this index takes on the value of zero for stateless societies and ethnic groups that were part of petty

chiefdoms and one otherwise (for ethnicities that were organized as paramount chiefdoms and ethnicities that were

part of large states). The set of control variables includes the distance of the centroid of each ethnicity-country area

from the respective capital city, the distance from the sea coast, the distance from the national border, log (1 + area

under water (lakes, rivers, and other streams)), log (surface area), land suitability for agriculture, elevation, a malaria

stability index, a diamond mine indicator, and an oil field indicator. Below the estimates, we report in parentheses

double-clustered standard errors at the country and the ethno-linguistic family dimensions.
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Table 2: National Institutions and Subnational Development in Africa. Michalopoulos and Pa-
paioannou (2014)

Panel A: Original Data
Pixel Level Ethnic-Specific RD Relative Distance

100 km
3rd-order 4th-order Close Far

(1) (2) (3) (4) (5) (6) (7) (8)

Institutional Quality 0.107** 0.025 0.099** 0.017 0.012 0.005 0.114* -0.001
(0.040) (0.016) (0.038) (0.018) (0.014) (0.016) (0.063) (0.023)

Mean Lit 0.124 0.124 0.123 0.123 0.123 0.123 0.218 0.086
Adj. R-squared 0.149 0.327 0.134 0.312 0.313 0.313 0.436 0.214
Observations 42709 42709 21289 21289 21289 21289 4655 10987

Panel B: Adjusted 2007-2008

(1) (2) (3) (4) (5) (6) (7) (8)

Institutional Quality 0.090** 0.027* 0.080*** 0.025* 0.012 0.007 0.095* 0.014
(0.034) (0.014) (0.030) (0.013) (0.013) (0.014) (0.052) (0.016)

Mean Lit 0.092 0.092 0.091 0.091 0.091 0.091 0.164 0.056
Adj. R-squared 0.140 0.297 0.120 0.272 0.272 0.272 0.379 0.159
Observations 42709 42709 21289 21289 21289 21289 4655 10987

Panel C: Adjusted 1992/2023

(1) (2) (3) (4) (5) (6) (7) (8)

Institutional Quality 0.108*** 0.010 0.111*** 0.027 0.005 -0.017 0.147*** 0.008
(0.037) (0.022) (0.035) (0.019) (0.016) (0.022) (0.051) (0.027)

Mean Lit 0.205 0.205 0.221 0.221 0.221 0.221 0.331 0.175
Adj. R-squared 0.191 0.317 0.185 0.325 0.327 0.327 0.414 0.269
Observations 42709 42709 21289 21289 21289 21289 4655 10987
Ethnicity FE No Yes No Yes Yes Yes Yes Yes
Pop. dens. and area Yes Yes Yes Yes Yes Yes Yes Yes
Location and geography No No No No No No Yes Yes

Note: The table reports cross-sectional, within-ethnicity OLS, and regression discontinuity (RD) estimates asso-

ciating regional development with contemporary national institutions, as reflected in the World Bank’s Governance

Matters rule of law index, averaged between 1996 and 2006 in areas of partitioned ethnicities at the grid-square level.

The dependent variable is an indicator that takes on the value of one if the grid square (of 0.125 x 0.125 decimal

degrees) is lit and zero otherwise. Columns (1) and (3) report cross-sectional specifications. All other columns give

within-ethnicity estimates, including a vector of ethnicity fixed effects (constants not reported). In columns (3) to

(8), we focus on ethnic areas within 50 kilometers of each side of the national border (a total of 100 kilometers). In

Columns (5) and (6), we include a global (common to all partitioned ethnicities) RD polynomial in the distance of

the centroid of each grid square to the national border, allowing the polynomial terms to differ on the two sides of

the border. In columns (7) and (8), we focus on grid squares that are relatively close or far from the corresponding

capital city on both sides of the border. We use the median relative distance to the capital within each country as

a cutoff. We control for log population density in 2000 and log land area in all specifications. In columns (7) and

(8), we further control for distance from the coast, distance from the national border, an indicator for pixels with a

water body (lakes, rivers, and other streams)), land suitability for agriculture, elevation, a malaria stability index, a

diamond mine indicator, and an oil field indicator. Below the estimates, we report double-clustered standard errors

in the country and ethnolinguistic family dimensions in parentheses.
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Table 3: Regional Favoritism. Hodler and Raschky (2014)

(1) (2) (3) (4) (5) (6) (7)
Lightict Lightict Lightict Lightict Lightict Light0ict Lightpcict

Panel A: Original data

Leaderict−1 0.038*** 0.019* 0.061*** 0.029** 0.062**
(0.014) (0.010) (0.010) (0.013) (0.025)

Leaderict 0.039**
(0.015)

Leaderict−2 0.041***
(0.013)

Lightict−1 0.400*** 0.962***
(0.024) (0.004)

Popict -0.958***
(0.068)

Number of regions 38,427 38,427 38,427 38,427 38,427 36,204 37,475
Observations 690,495 690,495 689,870 652,362 652,362 619,208 673,382
R-squared 0.97 0.97 0.97 0.98 0.96 0.98 0.93

Panel B: Adjusted DMSP-VIIRS

Leaderict−1 0.058*** 0.034*** 0.049*** 0.070*** 0.093***
(0.016) (0.010) (0.008) (0.018) (0.025)

Leaderict 0.044***
(0.016)

Leaderict−2 0.057***
(0.014)

Lightict−1 0.438*** 0.976***
(0.032) (0.003)

Popict -0.888***
(0.089)

Number of regions 38,427 38,427 38,427 38,427 38,427 35,204 37,475
Observations 690,495 690,495 689,870 652,362 652,362 594,983 673,382
R-squared 0.98 0.98 0.98 0.98 0.97 0.97 0.94

Note: The Table reports fixed effect regressions (except for column (5), which is standard OLS) using annual data

for subnational regions between 1992 and 2009. Panel A reports the original estimates in Hodler and Raschky (2014)

using the raw DMSP-OLS. Panel B gives the results with the adjusted DMSP-VIIRS series. The original column

8 was omitted (the outcome was not luminosity). Lightict is the log of average nighttime light intensity plus 0.01.

Light0ict is the log of average nighttime light intensity (without adding a constant). Lightpcict is the log of nighttime

light intensity per capita plus 0.01. Leaderict is a dummy variable equal to 1 if region i is the birth region of the

political leader in country c in year t, and zero otherwise. Popict is the log of regional population. All specifications

control for region and country-year fixed effects, except for specification (5), which includes only country-year FE.

Standard errors are adjusted for leader clustering. ***, **, * indicate significance at the 1%, 5%, and 10% levels,

respectively.
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A Data and Methodology

Appendix Figure A1 demonstrates the significant within-country over-time correlation between

the newly-compiled harmonized luminosity series, based on the downgrading and merging of the

VIIRS series to the adjusted for senor quality, top-coding, and blooming DMSP series. The figure

plots the harmonized nighttime light data alongside the share of the population with electricity in

Mozambique, Kenya, the Democratic Republic of Congo, Ghana, Tanzania, and Nigeria using data

from the World Bank’s Development Indicators Database. Two results emerge. First, luminosity

correlates with electricity access in all countries. Second, there was no major change in luminosity

from 2012 to 2014, when we switched from the DMSP to the VIIRS satellite system.

2



Figure A1: Electricity Access and Harmonized Luminosity Series across African Countries

(a) Mozambique (b) Kenya

(c) Democratic Republic of Congo (d) Ghana

(e) Tanzania (f) Nigeria

The figure plots trends in Electricity Access (as a share of the total population) and the sum of the harmonized

and adjusted VIIRS-DSMP luminosity series (in thousands of DNs) across six African countries. Data on electricity

access come from World Bank’s World Development Indicators Database.
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Figure A2: Mapping Nighttime Lights. Africa VIIRS and DMSP in 2013

Extremely Randomized Trees (Ensemble Method)
(a) Scatter Ensemble Method (b) Confusion Matrix Ensemble Method

Sigmoid Function Approach Li et al. (2020)
(c) Scatter Sigmoid ‘DMSP-like’ (d) Confusion Matrix Sigmoid ‘DMSP-like’

Convolutional Neural Network Approach Nechaev et al. (2021)
(e) Scatter Neural Network ‘DVNL’ (f) Confusion Matrix Neural Network ‘DVNL’

This figure gives illustrations of the pixel-level mapping of downgraded VIIRS to original DMSP in 2013. Panels

(a)-(b) report estimates with our extremely randomized trees, ensemble method. The downgraded data presented

here are from a model trained in 2012 (when VIIRS data is available for only part of the year) and predicted

‘out-of-sample’ in 2013 (when VIIRS data is available for the full year). Panels (c)-(b) give estimates with the

sigmoid function of Li et al. (2020) that yields ‘DMSP-like’ downgraded VIIRS series. Panels (e) and (f) give the

tabulation of the convolutional neural network method of Nechaev et al. (2021), ‘DVNL’. Panels (b), (d), and (f)

give confusion matrices looking at the extensive margin of luminosity in 2013.4



Table A1: Feature Importances in the ERT models

Feature Importances

Name No fix Bloom only Topcode only Both fixes

VIIRS mean in 9x9 pixel window 0.112 0.121 0.088 0.092
VIIRS mean in 13x13 pixel window 0.107 0.136 0.078 0.081
VIIRS mean in 7x7 pixel window 0.105 0.111 0.105 0.104
VIIRS mean in 11x11 pixel window 0.101 0.089 0.099 0.075
VIIRS mean in 17x17 pixel window 0.089 0.074 0.081 0.088
VIIRS mean in 5x5 pixel window 0.087 0.103 0.085 0.093
VIIRS mean in 3x3 pixel window 0.073 0.057 0.068 0.046
VIIRS mean in 21x21 pixel window 0.062 0.087 0.075 0.084
VIIRS minimum in pixel 0.058 0.057 0.093 0.057
VIIRS mean in pixel 0.045 0.032 0.063 0.029
VIIRS median in pixel 0.036 0.044 0.071 0.031
Western Europe dummy 0.021 0.012 0.004 0.003
VIIRS maximum in pixel 0.020 0.022 0.028 0.023
Southern Europe dummy 0.011 0.006 0.002 0.002
VIIRS var. in 13x13 pixel window 0.011 0.004 0.004 0.005
VIIRS var. in 7x7 pixel window 0.007 0.008 0.004 0.006
VIIRS var. in 5x5 pixel window 0.007 0.005 0.003 0.004
VIIRS var. in 9x9 pixel window 0.007 0.004 0.004 0.006
VIIRS var. in 11x11 pixel window 0.005 0.004 0.005 0.005
Asiatic Russia dummy 0.005 0.002 0.002 0.001
VIIRS var. in 3x3 pixel window 0.004 0.003 0.003 0.003
Northern Europe dummy 0.004 0.001 0.002 0.004
VIIRS var. in 17x17 pixel window 0.003 0.003 0.004 0.006
Eastern Asia dummy 0.003 0.003 0.001 0.002
Eastern Europe dummy 0.003 0.001 0.001 0.001
Southern Asia dummy 0.002 0.001 0.001 0.001
VIIRS var. in 21x21 pixel window 0.001 0.002 0.004 0.006
Off-Coast dummy 0.001 0.002 0.001 0.022
Western Asia dummy 0.001 0.001 0.005 0.003
European Russia dummy 0.001 0.001 0.003 0.012
Northern America dummy 0.001 0.001 0.003 0.003
Northern Africa dummy 0.001 0.001 0.001 0.097
South America dummy 0.001 0.001 0.001 0.001
Australia/New Zealand dummy 0.001 0.001 0.000 0.000
Middle Africa dummy 0.001 0.000 0.000 0.000
Western Africa dummy 0.001 0.000 0.000 0.000
Eastern Africa dummy 0.001 0.000 0.000 0.000
Southeastern Asia dummy 0.000 0.000 0.006 0.003
Polynesia dummy 0.000 0.000 0.000 0.000
Micronesia dummy 0.000 0.000 0.000 0.000
Melanesia dummy 0.000 0.000 0.000 0.000
Southern Africa dummy 0.000 0.000 0.000 0.000
Central America dummy 0.000 0.000 0.000 0.000
Central Asia dummy 0.000 0.000 0.000 0.000
Caribbean dummy 0.000 0.000 0.000 0.000

Note: This table lists all features that are used in the Extremely Randomized Trees model to downgrade VIIRS.

Each row corresponds to a feature and the columns show the feature importances for each of the four models that we

implement. Feature importance is measured by the normalized total reduction of the model sum of squared errors

from a feature, i.e. if the feature is removed from the trained model how much would model performance fall. The

normalization ensures all feature importances sum to one.
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B Supplementary Evidence

B.1 Cross Country Luminosity - GDP Elasticity. Further Evidence

This Appendix Section complements the cross-country correlation between GDP (Gross Domestic

Product) and the newly compiled luminosity series that fuse the VIIRS data (2013− 2023) to the

DMSP data (1992 − 2013). The estimates, therefore, complement the (graphical) analysis of the

cross-country GDP-luminosity elasticity in Section 3 of the main paper. First, we report addi-

tional cross-sectional patterns. Second, we give additional results of the within-country over time

association between luminosity and GDP. Third, we report additional long-difference estimates.

Cross-sectional Patterns Panel A of Appendix Table B2 (global sample) and Appendix Table

B3 (Africa sample) report pooled across years, cross-sectional regression estimates of the following

form:

lnGDP c,t = β lnNLc,t + γa ln(area)c + γp ln popc,t + µt + ϵc,t (3)

ln(GDP )c,t denotes the logarithm of current GDP (in PPP terms) of country c in year t;

ln(NL)c,t is the log sum of the merged DMSP-VIIRS nightlights; ln(pop)c,t is the log of population

while ln(area)c denotes log land area. All specifications include year constants, µt, that capture

the increase in development and luminosity over time. Column (1) gives the lights-GDP elasticity

across the entire period, 1992−2019; columns (2) and (3) look at the periods where only DMSP and

only VIIRS are available, respectively. The luminosity GDP elasticity is about 0.61 for the global

sample (Appendix Table B2) and 0.53 for the Africa sample (Appendix Table B3); the coefficient

is highly significant, showing that luminosity is a good proxy of output in both samples. The fit

is strong with an adjusted R2 consistently above 0.9. As shown in columns (4)-(6) of Tables B2

and B3, the lights-GDP elasticity of the merged series adjusting for the deficiencies of DMSP is

somewhat smaller as compared to the unadjusted DMSP data (about 0.61 vs 0.67 and 0.53 vs 0.62,

respectively), though the fit is similarly strong. This alludes to a key finding throughout the paper,

which is that the relative value of the corrected series is most substantial at fine levels of spatial

analysis.

We then examine the correlation across African countries. Appendix Figure B3, panels (a)

and (b) give a graphical illustration in 2005 (DMSP) and 2015 (VIIRS). As shown in Appendix

Table B4, the GDP-luminosity elasticity is stable when we augment the specifications with broad

regional constants (southern, central, western, eastern, and northern Africa) or exclude island

nations (Comoros, Equatorial Guinea, Mauritius, Mayotte, Reunion, Sao Tome and Principe, and

Seychelles).
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Panel Estimates Appendix Table B3 - Panel B examines the dynamic association between

nighttime lights and GDP for Africa. To do so, we augment the cross-sectional specification with

country-fixed effects (δc). The regression equation reads:

lnGDPc,t = β lnNLc,t + µt + δc + ϵc,t (4)

The regression analysis, therefore, complements the graphical illustrations in Figure B3 panels

(c)-(d). GDP-luminosity elasticity with the newly compiled harmonized luminosity series that

fuses the higher quality and more granular VIIRS series to the DMSP series adjusted for top-

coding, blooming, and sensor quality in columns (1)-(3) hovers around 0.15 − 0.2. The elasticity

is relatively stable when we drop island nations or interact the year constants with broad African

region fixed effects to account for regional trends (Appendix Table B5). When we use the merged

VIIRS to the unadjusted DMSP (in (4)-(6)), we obtain again a highly significant elasticity, which is

somewhat higher (around 0.17−0.28). Appendix Figure B3, panels (e)-(f), plot the panel correlation

across African countries, which is similar. Appendix Table B4-Panel (b) gives the corresponding

regression estimates.

Long-Run Differences Appendix Table B3-Panel (c) plots the correlation between long-run

changes in GDP and night-time lights in long differences for African countries. Taking the long-run

differences (over 2019-1992 and 2013-1992) reduces noise in both GDP and nighttime lights, which

is likely considerable in the annual frequency. The specification reads.

∆ lnGDPc = β∆ lnNLc + δ∆ lnPopc + [µr] + ϵc (5)

where ∆ln(GDP ) is the change in log GDP, ∆ln(NL)c the change in log nightlights, ∆ln(Pop)c

the change in log population, and µr(c) are broad region r constants. Consistent with the graphical

illustrations in Figure B3, panels (c)-(d), the elasticity hovers around 0.27 (columns (1)-(3)), close

to the ones estimated for our global sample and those reported by Henderson et al. (2012). The

median regression estimates, reported in Appendix Table B6, are pretty similar (around 0.2).
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Figure B3: GDP-Luminosity Elasticity. Africa Country-level Estimates

(a) Cross-sectional - log GDP 2005 (b) Cross-sectional - log GDP 2015

(c) Long-Differences - ∆ 1992-2019 (d) Long-Differences - ∆ 1992-2013

(e) Panel Estimates - Annual (f) Panel Estimates - 5-year

Panels (a) and (b) plot the cross-country association between the log of GDP and the log of nighttime lights (lumi-

nosity) across African countries in 2005 (DMSP period) and in 2015 (VIIRS period), alongside the LS regression line

(solid line) and the median regression line (dashed). Panels (c) and (d) plot the long-difference association between

log GDP and log luminosity over 2019-1992 and 2013-1992, respectively. Countries in panels (a) - (d) are colored

according to their broad African region (East, West, North, Central, and Southern). Panels (e) and (f) plot the panel

association between log GDP and the log nighttime lights (luminosity) across African countries and years during the

period 1992-2019. Panel (e) uses all observations; panel (f) uses five-year average values. The panels plot the resid-

uals of log GDP and log luminosity on country fixed-effects and year fixed-effects. Blue dots indicate country-year

residuals during 1992-2012 (DMSP period) and the red dots indicate residuals during 2013-2019 (VIIRS period). All

specifications use the (logarithm of the) newly compiled luminosity series harmonized VIIRS-DMSP after adjusting

the DMSP data for top coding, sensor calibration, and blooming.
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Table B2: GDP - Luminosity Elasticity. Global Cross-Country Estimates

Sensor, Blooming, & Topcode Fixes Sensor Calibration Only

(1) (2) (3) (4) (5) (6)
ln(GDP) ln(GDP) ln(GDP) ln(GDP) ln(GDP) ln(GDP)

Panel A: Cross-sectional estimates

ln(NL) 0.609∗∗∗ 0.607∗∗∗ 0.620∗∗∗ 0.665∗∗∗ 0.665∗∗∗ 0.675∗∗∗

(0.0186) (0.0190) (0.0205) (0.0196) (0.0205) (0.0203)

ln(area) -0.0581∗ -0.0468 -0.101∗∗∗ -0.0881∗∗ -0.0731∗ -0.145∗∗∗

(0.0315) (0.0304) (0.0389) (0.0417) (0.0409) (0.0465)

ln(Pop.) 0.443∗∗∗ 0.430∗∗∗ 0.486∗∗∗ 0.441∗∗∗ 0.421∗∗∗ 0.508∗∗∗

(0.0408) (0.0399) (0.0497) (0.0515) (0.0514) (0.0563)

Sample Years 1992-2019 1992-2013 2014-2019 1992-2019 1992-2013 2014-2019
Cntry-yrs 4841 3803 1038 4841 3803 1038
Countries 173 173 173 173 173 173
R2 0.956 0.956 0.956 0.946 0.944 0.950

Panel B: Panel Estimates

ln(NL) 0.174∗∗∗ 0.151∗∗∗ 0.100∗∗∗ 0.218∗∗∗ 0.184∗∗∗ 0.130∗∗∗

(0.0290) (0.0310) (0.0306) (0.0381) (0.0445) (0.0384)

ln(Pop.) 0.280∗∗∗ 0.346∗∗∗ 0.151 0.278∗∗∗ 0.322∗∗ 0.0965
(0.106) (0.132) (0.179) (0.105) (0.134) (0.182)

Sample Years 1992-2019 1992-2013 2014-2019 1992-2019 1992-2013 2014-2019
Cntry-yrs 4841 3803 1038 4841 3803 1038
Countries 173 173 173 173 173 173
R2 0.996 0.997 0.999 0.996 0.997 0.999
within R2 0.186 0.170 0.053 0.206 0.174 0.054

Panel C: Long-difference Estimates

∆ ln(NL) 0.258∗∗∗ 0.225∗∗∗ 0.188∗∗∗ 0.334∗∗∗ 0.323∗∗∗ 0.183∗∗∗

(0.0342) (0.0389) (0.0493) (0.0348) (0.0465) (0.0400)

∆ ln(Pop.) 0.259∗∗ 0.359∗∗ 0.249 0.257∗∗ 0.325∗∗ 0.327
(0.126) (0.165) (0.289) (0.125) (0.164) (0.297)

Sample Years 1992-2019 1992-2013 2014-2019 1992-2019 1992-2013 2014-2019
Countries 173 173 173 173 173 173
R2 0.322 0.303 0.149 0.375 0.358 0.144

Note: This table presents regressions of (adjusted for PPP) log national GDP from the World Bank on nightlights
for all available countries. Panel A shows cross-sectional estimates, while panels B and C shows panel and long
differences estimates, respectively. Columns 1-3 use nightlights that have been adjusted for cross-sensor calibration
including the downgrading of VIIRS. Columns 4-6 use nightlights that have also been adjusted to fix blooming and
topcoding. All specifications include nightlights as the log sum of light in a country and the log sum of population.
Panel A also includes the log area of the country. Panel A includes fixed effects for year, while Panel B includes
fixed effects for year and country, and Panel C includes fixed effects for region. Standard errors in parentheses are
clustered at the country level. ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Table B3: GDP - Luminosity Elasticity. Africa Cross-Country Estimates

Sensor, Blooming, & Topcode Fixes Sensor Calibration Only

(1) (2) (3) (4) (5) (6)
ln(GDP) ln(GDP) ln(GDP) ln(GDP) ln(GDP) ln(GDP)

Panel A: Cross-sectional estimates

ln(NL) 0.529∗∗∗ 0.540∗∗∗ 0.496∗∗∗ 0.626∗∗∗ 0.635∗∗∗ 0.597∗∗∗

(0.0324) (0.0350) (0.0332) (0.0311) (0.0327) (0.0357)

ln(area) -0.0205 -0.00387 -0.0808 -0.0118 0.00545 -0.0745
(0.0441) (0.0446) (0.0524) (0.0406) (0.0402) (0.0487)

ln(Pop.) 0.414∗∗∗ 0.386∗∗∗ 0.509∗∗∗ 0.370∗∗∗ 0.345∗∗∗ 0.456∗∗∗

(0.0710) (0.0729) (0.0780) (0.0645) (0.0660) (0.0694)

Sample Years 1992-2019 1992-2013 2014-2019 1992-2019 1992-2013 2014-2019
Cntry-yrs 1344 1056 288 1344 1056 288
Countries 48 48 48 48 48 48
R2 0.931 0.929 0.931 0.941 0.941 0.934

Panel B: Panel Estimates

ln(NL) 0.173∗∗∗ 0.197∗∗∗ 0.151∗∗ 0.277∗∗∗ 0.278∗∗∗ 0.173∗∗

(0.0446) (0.0390) (0.0648) (0.0475) (0.0456) (0.0750)

ln(Pop.) 0.888∗∗∗ 0.866∗∗∗ 1.378∗∗ 0.747∗∗∗ 0.795∗∗∗ 1.372∗∗

(0.284) (0.265) (0.521) (0.250) (0.253) (0.530)

Sample Years 1992-2019 1992-2013 2014-2019 1992-2019 1992-2013 2014-2019
Cntry-yrs 1344 1056 288 1344 1056 288
Countries 48 48 48 48 48 48
R2 0.993 0.995 0.999 0.993 0.995 0.999
within R2 0.302 0.320 0.178 0.351 0.340 0.173

Panel C: Long-difference Estimates

∆ ln(NL) 0.288∗∗∗ 0.247∗∗∗ 0.267∗∗∗ 0.366∗∗∗ 0.350∗∗∗ 0.228∗∗

(0.0610) (0.0482) (0.0746) (0.0882) (0.0764) (0.0916)

∆ ln(Pop.) 0.423 0.574∗∗ 0.342 0.357 0.433 0.425
(0.255) (0.283) (0.438) (0.295) (0.339) (0.468)

Sample Years 1992-2019 1992-2013 2014-2019 1992-2019 1992-2013 2014-2019
Countries 48 48 48 48 48 48
R2 0.491 0.433 0.544 0.476 0.418 0.488

Note: This table presents regressions of (adjusted for PPP) log national GDP from the World Bank on nightlights
for all available countries. Panel A shows cross-sectional estimates, while panels B and C shows panel and long
differences estimates, respectively. Columns 1-3 use nightlights that have been adjusted for cross-sensor calibration
including the downgrading of VIIRS. Columns 4-6 use nightlights that have also been adjusted to fix blooming and
topcoding. All specifications include nightlights as the log sum of light in a country and the log sum of population.
Panel A also includes the log area of the country. Panel A includes fixed effects for year, while Panel B includes
fixed effects for year and country, and Panel C includes fixed effects for region. Standard errors in parentheses are
clustered at the country level. ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Table B4: GDP - Luminosity Elasticity. Sensitivity. Africa Cross-Sectional Estimates

Sensor, Blooming, & Topcode Fixes Sensor Calibration Only

(1) (2) (3) (4) (5) (6)
ln(GDP) ln(GDP) ln(GDP) ln(GDP) ln(GDP) ln(GDP)

Panel A: All African countries, adding Region FEs

ln(NL) 0.605∗∗∗ 0.613∗∗∗ 0.606∗∗∗ 0.737∗∗∗ 0.747∗∗∗ 0.710∗∗∗

(0.0581) (0.0596) (0.0592) (0.0496) (0.0489) (0.0592)

Sample Years 1992-2019 1992-2013 2014-2019 1992-2019 1992-2013 2014-2019
Cntry-yrs 1344 1056 288 1344 1056 288
Countries 48 48 48 48 48 48
R2 0.949 0.949 0.949 0.961 0.962 0.956

Panel B: All African countries, adding Region FEs and Island Dummy

ln(NL) 0.592∗∗∗ 0.602∗∗∗ 0.587∗∗∗ 0.745∗∗∗ 0.765∗∗∗ 0.693∗∗∗

(0.0647) (0.0674) (0.0615) (0.0604) (0.0587) (0.0634)

Sample Years 1992-2019 1992-2013 2014-2019 1992-2019 1992-2013 2014-2019
Cntry-yrs 1344 1056 288 1344 1056 288
Countries 48 48 48 48 48 48
R2 0.950 0.950 0.951 0.961 0.963 0.957

Panel C: Dropping island nations

ln(NL) 0.529∗∗∗ 0.544∗∗∗ 0.483∗∗∗ 0.607∗∗∗ 0.616∗∗∗ 0.574∗∗∗

(0.0272) (0.0309) (0.0282) (0.0325) (0.0362) (0.0292)

Sample Years 1992-2019 1992-2013 2014-2019 1992-2019 1992-2013 2014-2019
Cntry-yrs 1232 968 264 1232 968 264
Countries 44 44 44 44 44 44
R2 0.927 0.923 0.933 0.933 0.929 0.937

Note: This table presents regressions of log national GDP from the World Bank on nightlights. All specifications
include nightlights as the log sum of light in a country, the log area of the country, the log sum of population, and
fixed effects for year. Each panel is done for a different sample or set of controls: panel A uses the sample of all
African countries and adds region (central, east, north, south, and west) fixed effects, panel B adds region FEs and
a dummy for island nations (Comoros, Mauritius, Mayotte, Reunion, Sao Tome and Principe, and Seychelles), and
panel C restricts the sample to Africa countries excluding island nations with baseline controls. Columns 1-3 use
nightlights that have been adjusted to fix blooming and topcoding including also cross-sensor calibration and the
downgrading of VIIRS. Columns 4-6 use nightlights that have only been adjusted for cross-sensor calibration.
Standard errors in parentheses are clustered at the country level. ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Table B5: GDP - Luminosity Elasticity. Sensitivity. Africa Panel Estimates

Sensor, Blooming, & Topcode Fixes Sensor Calibration Only

(1) (2) (3) (4) (5) (6)
ln(GDP) ln(GDP) ln(GDP) ln(GDP) ln(GDP) ln(GDP)

Panel A: All African countries

ln(NL) 0.173∗∗∗ 0.197∗∗∗ 0.151∗∗ 0.277∗∗∗ 0.278∗∗∗ 0.173∗∗

(0.0446) (0.0390) (0.0648) (0.0475) (0.0456) (0.0750)

ln(Pop.) 0.888∗∗∗ 0.866∗∗∗ 1.378∗∗ 0.747∗∗∗ 0.795∗∗∗ 1.372∗∗

(0.284) (0.265) (0.521) (0.250) (0.253) (0.530)

Sample Years 1992-2019 1992-2013 2014-2019 1992-2019 1992-2013 2014-2019
Cntry-yrs 1344 1056 288 1344 1056 288
Countries 48 48 48 48 48 48
R2 0.993 0.995 0.999 0.993 0.995 0.999
within R2 0.302 0.320 0.178 0.351 0.340 0.173

Panel B: exclude island nations

ln(NL) 0.192∗∗∗ 0.208∗∗∗ 0.225∗∗∗ 0.331∗∗∗ 0.304∗∗∗ 0.264∗∗∗

(0.0462) (0.0409) (0.0745) (0.0412) (0.0462) (0.0848)

ln(Pop.) 1.052∗∗∗ 0.960∗∗∗ 1.843∗∗∗ 0.873∗∗∗ 0.888∗∗∗ 1.877∗∗∗

(0.308) (0.290) (0.524) (0.249) (0.263) (0.514)

Sample Years 1992-2019 1992-2013 2014-2019 1992-2019 1992-2013 2014-2019
Cntry-yrs 1232 968 264 1232 968 264
Countries 44 44 44 44 44 44
R2 0.991 0.993 0.998 0.992 0.994 0.998
within R2 0.345 0.342 0.282 0.411 0.371 0.281

Panel C: region-year FEs and exclude islands

ln(NL) 0.245∗∗∗ 0.197∗∗∗ 0.182∗∗ 0.319∗∗∗ 0.265∗∗∗ 0.240∗∗

(0.0414) (0.0429) (0.0732) (0.0477) (0.0525) (0.0934)

ln(Pop.) 1.109∗∗∗ 1.631∗∗∗ 0.927 1.127∗∗∗ 1.610∗∗∗ 1.108
(0.321) (0.401) (0.732) (0.293) (0.379) (0.678)

Sample Years 1992-2019 1992-2013 2014-2019 1992-2019 1992-2013 2014-2019
Cntry-yrs 1232 968 264 1232 968 264
Countries 44 44 44 44 44 44
R2 0.993 0.995 0.999 0.993 0.995 0.999
within R2 0.380 0.414 0.117 0.401 0.429 0.128

Note: This table presents regressions of log national GDP from the World Bank on nightlights. Panel A uses all
available countries in Africa, panel B excludes island nations (Comoros, Equatorial Guinea, Mauritius, Mayotte,
Reunion, Sao Tome and Principe, and Seychelles), and panel C adds fixed effects for region-year (central, north,
east, south, west) as well as excluding islands. All panels restrict the sample to every 5 years (starting from the
sample base year). Columns 1-3 use nightlights that have been adjusted for cross-sensor calibration including the
downgrading of VIIRS. Columns 4-6 use nightlights that have also been adjusted to fix blooming and topcoding.
All specifications include nightlights as the log sum of light in a country, the log sum of population, and fixed effects
for year and country. Standard errors in parentheses are clustered at the country level. ∗p < 0.1, ∗∗p < 0.05,
∗∗∗p < 0.01.
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Table B6: Africa National GDP Long Differences Estimates

1992/93-2018/19 1992-2013

(1) (2) (3) (4)
DMSP+-VIIRS DMSP-DMSP DMSP+-DMSP+ DMSP+-VIIRS

Panel A: All African countries

∆ ln(NL) 0.288∗∗∗ 0.350∗∗∗ 0.247∗∗∗ 0.251∗∗∗

(0.0610) (0.0764) (0.0482) (0.0521)

∆ ln(Pop.) 0.423 0.433 0.574∗∗ 0.577∗

(0.255) (0.339) (0.283) (0.286)

Countries 48 48 48 48
R2 0.416 0.332 0.349 0.363

Panel D: All African countries (median regression)

∆ ln(NL) 0.200∗∗∗ 0.249∗∗ 0.182∗∗∗ 0.190∗∗∗

(0.0559) (0.123) (0.0540) (0.0395)

∆ ln(Pop.) 0.379∗∗ 0.633 0.724∗∗∗ 0.741∗∗

(0.187) (0.464) (0.222) (0.279)

Countries 48 48 48 48
pseudo-R2 0.313 0.223 0.250 0.255

Note: This table presents regressions of log national GDP from the World Bank on nightlights. Each panel is done
for a different model: panel A reports OLS estimates, and panel B estimates median regressions. Column 1 takes
the long difference 1992-2019 and columns 2-4 take the long difference from 1992-2013. Column 2 uses DMSP data
before cleaning, and the remaining columns use the cleaned DMSP data (denoted DMSP+) All specifications are log
GDP on log sum of nightlights and log population in a country controlling for region FEs. Standard errors are
robust to heteroskedacticity. ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
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B.2 Local African Development (DHS Analysis). Further Evidence

This Appendix Section complements the regional analysis linking development outcomes from the

Demographic and Health Surveys with the newly compiled harmonized VIIRS-DSMP luminosity

series in Section 4 of the main paper.

Data Aggregation Appendix Figure B4 illustrates the aggregation of the DHS data to gridcells

of 0.25×0.25 degrees, roughly 27.8km by 27.8km at the equator, zooming into central Mozambique.

Circles report DHS enumeration areas or clusters, typically (large) villages, towns, and cities. The

map also displays grid cells (black lines) to which we aggregate the underlying DHS data. The

gridcell size choice (0.25× 0.25 degrees) is a product of DHS displacement. The DHS cluster GPS

points are displaced by up to 10km to maintain anonymity. So by choosing gridcells that are

28km wide and tall, we ensure that any DHS cluster located at the center of a gridcell will be

assigned to that gridcell even after displacement. This is especially important when building the

panel data, since grid cells that are too small will not have repeat observations due to random DHS

displacement. Of course, even with our choice of gridcell size, it is always possible that we ‘miss’

DHS clusters that repeat over time but are displaced to adjacent gridcells.

Sample Appendix Table B7 gives the survey years for all counties in the DHS analysis. The 34

countries come from all parts of Africa; some are landlocked (e.g., Burkina Faso, Central African

Republic, Burundi), some coastal (e.g., Mozambique, Sierra Leone), and a few are island nations

(Madagascar, Comoros). The sample spans relatively richer and poorer countries and includes

former British, French, Portuguese, and Belgian colonies.

Summary Statistics Appendix Table B8 gives summary statistics for the four outcomes from

the DHS (years of schooling, composite wealth index, access to improved sanitation, and access to

electricity); the luminosity series (with and without the adjustments in the DMSP for top-coding

and blooming), and area.

Preliminary Cross-Sectional Patterns Appendix Figure B5 illustrates the significant, al-

though far from perfect, cross-sectional association between luminosity and the four proxies of

local development. The four panels plot the histogram of mean years of schooling, the composite

wealth index, access to improved sanitation, and electricity, for lit and unlit small gridcells, netting

out country-year fixed effects and conditioning on log gridcell area. The histogram for lit gridcells

(red vertical bars) is evidently to the right of the analogous one for unlit gridcells (blue bars).

The two distributions are different for all development outcomes, especially with education and

household wealth. Nonetheless, there is also overlap, as the binary transformation of luminosity
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cannot fully capture the wide spatial variation in well-being within African countries.

Baseline Regression Analysis Appendix Tables B9 and B10 report cross-sectional and panel

estimates linking the four DHS outcome measures (education, composite wealth index, access to

improved sanitation, and electricity) to log luminosity and the lit indicator. In these tables, we do

not standardize the dependent variables (as we do in the graphical illustrations in the main paper).

In both tables, panels A and C report estimates with the newly compiled, adjusted for top-coding

and blooming DMSP series merged to the downgraded VIIRS. For comparability, panels B and

D give the results with the merged VIIRS-DMSP series without adjusting the pre-2013 DMSP

series for top-coding and blooming. The two tables, therefore, report the regression analogs to the

coefficients reported in Figure 3. The cross-sectional specifications in Panel C of Appendix Table

B9 suggest a significant increase of 1 (one standard deviation) in the DHS standardized composite

wealth index and about 1.7 more schooling years between lit and unlit areas. The panel estimates,

while yielding statistically significant correlations, imply smaller effects. The results in panel C of

Appendix Table B10 imply an increase of 0.1 years of schooling and 0.04 in the composite wealth

index for administrative units turning from unlit to lit.

Further Evidence A. Varying Spatial Unit Appendix Figures B6, B7, and B8 panels (a)

and (b) explore the association between luminosity and education, access to improved sanitation,

and electricity varying the size of the spatial unit. The results, therefore, complement the analysis

in Figure 4 - Panels (a)-(b), in the main paper with the composite wealth index. The patterns

with the three development proxies are similar to the ones with the DHS wealth index, based on

household assets. First, cross-sectionally, differences in education, access to improved sanitation and

electricity correlate with log luminosity across both small, medium, and larger areas. Besides, the

coefficients are similar. Second, changes in log luminosity within gridcells over time correlate with

changes in the three development proxies, although the dynamic correlations are weaker and more

noisy. Third, the use of the harmonized and adjusted merged VIIRS-DSMP data yield stronger

and with smaller standard errors correlations, especially in the panel specifications.

Further Evidence B. Varying Localized Variation Panels (c)-(d) of Appendix Figures B6,

B7, and B8 report coefficients on log luminosity with education, access to electrification, and

to improved sanitation, varying the localized variation with fixed-effects of varying coarseness.

These specifications are, thus, similar to the ones in panels (c) and (d) of Figure 4 the composite

wealth index as the outcome variable. The qualitative takeaways are mostly similar as with the

composite wealth index. Notably, the luminosity years of schooling correlation turns significant

only when adding mid-size fixed effects, of blocks 8 × 8 cells or larger. Besides, the luminosity

access to electrification correlation is highly significant with the newly harmonized series, even
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when exploiting very granular variability with fine fixed-effects, illustrating again the reduction in

measurement error from our ensemble method that fuses a downgraded vintage of VIIRS into the

DMSP after adjusting them for top-coding, blooming, and sensor calibration (see Section 2).

Further Evidence C. Rural-Urban Figure 5 plots the coefficients on luminosity distinguishing

across DHS respondents in rural and urban households (using the DHS classification). Panels (a)

and (b) give cross-sectional estimates with log luminosity and the lit indicator (conditioning for

log land area and country-survey-year constants). Panels (c) and (d) give panel estimates (with

unit fixed effects and country-survey-year fixed effects). Red markers [diamonds] give the esti-

mates with the harmonized and adjusted VIIRS-DMSP series, while blue markers [squares] report

analogous estimates with the unadjusted for top-coding and blooming series. The cross-sectional

analysis suggests that within-country across space) differences in luminosity correlate significantly

with schooling, access to public goods, and household assets (as captured in the composite wealth

index). The estimates appear similar in urban and rural locations. Besides, the adjustment for

top-coding and blooming slightly improves the coefficient’s magnitude. The panel specifications

yield somewhat different patterns. First, the coefficients are statistically indistinguishable from

zero when one uses the ‘raw’ luminosity series. In contrast, the coefficients are higher and pass

standard statistical significance thresholds with the newly compiled harmonized and adjusted for

top-coding, blooming, and sensor calibration lights series. Second, the coefficients in the urban

sample of survey respondents are always larger than the ones in the rural sample, telling that the

local development-luminosity nexus is stronger in urban areas.
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Figure B4: Aggregation Example. DHS Clusters and Gridcells

The figure maps the southern coast of Mozambique near the city of Maxixe/Inhambane. The circles represent DHS

clusters (enumeration areas), colored by the survey year. The grid gives the cells at which we aggregate and analyze

the DHS data. The background imagery is from OpenStreetMap.
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Table B7: DHS Sample

Country
N

years
N

cell-years
Sample years

1 Angola 3 486 2006, 2011, 2015
2 Benin 4 366 1996, 2001, 2012, 2017
3 Burkina Faso 7 1168 1993, 1999, 2003, 2010, 2014, 2017, 2021
4 Burundi 3 129 2010, 2012, 2016
5 Cameroon 4 836 2004, 2011, 2018, 2022
6 CAR 1 64 1994
7 Chad 1 330 2014
8 Comoros 1 10 2012
9 Cote d’Ivoire 4 658 1994, 1998, 2012, 2021
10 DRC 2 586 2007, 2013
11 Egypt 7 839 1992, 1995, 2000, 2003, 2005, 2008, 2014
12 Gabon 2 254 2012, 2019
13 Ghana 8 1303 1993, 1998, 2003, 2008, 2014, 2016, 2019, 2022
14 Guinea 5 730 1999, 2005, 2012, 2018, 2021
15 Kenya 6 1348 2003, 2008, 2014, 2015, 2020, 2022
16 Lesotho 3 157 2004, 2009, 2014
17 Liberia 7 609 2007, 2009, 2011, 2013, 2016, 2019, 2022
18 Madagascar 6 1453 1997, 2008, 2011, 2013, 2016, 2021
19 Malawi 7 809 2000, 2004, 2010, 2012, 2014, 2015, 2017
20 Mali 8 1487 1996, 2001, 2006, 2010, 2012, 2015, 2018, 2021
21 Morocco 1 223 2003
22 Mozambique 5 1173 2009, 2011, 2015, 2018, 2022
23 Namibia 3 572 2000, 2006, 2013
24 Niger 4 615 1992, 1998, 2012, 2021
25 Nigeria 7 2672 2003, 2008, 2010, 2013, 2015, 2018, 2021
26 Rwanda 5 208 2005, 2008, 2010, 2014, 2019
27 Senegal 13 1646 1993, 1997, 2005, 2008, 2010, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2023
28 Sierra Leone 4 392 2008, 2013, 2016, 2019
29 Swaziland 1 32 2006
30 Tanzania 8 2310 1999, 2003, 2007, 2010, 2012, 2015, 2017, 2022
31 Togo 3 220 1998, 2013, 2017
32 Uganda 8 1232 2000, 2006, 2009, 2010, 2011, 2014, 2016, 2018
33 Zambia 3 867 2007, 2013, 2018
34 Zimbabwe 4 814 1999, 2005, 2010, 2015

Table B8: Descriptive Statistics - Nightlights and DHS

Min p10 p50 p90 Max Mean SD N

Sensor, blooming, & topcode fixes 0.00 0.00 0.00 796.00 731,690.00 960.29 9,196.85 26598
Sensor calibration only 0.00 0.00 25.00 2,292.00 57,906.00 1,229.96 4,473.76 26598
Log of sensor, blooming, & topcode fixes -0.69 -0.69 -0.69 6.68 13.50 1.75 3.19 26598
Log of sensor calibration only -0.69 -0.69 3.24 7.74 10.97 2.94 3.56 26598
Sensor, blooming, & topcode fixes (dummy) 0.00 0.00 0.00 1.00 1.00 0.44 0.50 26598
Sensor calibration only (dummy) 0.00 0.00 1.00 1.00 1.00 0.56 0.50 26598
Gridcell area in km2 4.00 693.96 754.60 768.67 769.31 727.77 102.72 26598
Log of gridcell area in km2 1.39 6.54 6.63 6.64 6.65 6.56 0.31 26598
Years of adult (15-39) schooling 0.00 0.82 5.09 9.02 13.83 5.02 3.00 21681
Wealth Index 1.00 1.33 2.45 3.99 5.00 2.56 0.97 23224
Share of Households with Improved Sanitation 0.00 0.05 0.80 1.00 1.00 0.66 0.35 26515
Share of Households with electricity 0.00 0.00 0.04 0.88 1.00 0.25 0.33 26516

Note: This table presents summary statistics for the nightlights and DHS database. The observations are at the grid level.
The total number of countries available is 34. For the log of nightlights we take ((half of the minimum value of positive NL)
+ NL) before taking the log.
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Figure B5: DHS Development Outcomes across Lit and Unlit gridcells

(a) Mean Adult (15-39) years schl. (b) Avg. Wealth Index

(c) Improved Sanitation (d) HH has Elect.

The figure plots the histograms of four proxies of local development for lit and unlit 0.25×0.25 gridcells after netting

country-survey-year fixed-effects and log land area. Panel (a) gives average years of schooling for individuals between

15 and 39 years old. Panel (b) gives the DHS composite wealth index, based on household assets. Panel (c) gives the

tabulations on access to improved sanitation. Panel (d) gives the histograms for household access to electricity.
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Table B9: DHS Cross-sectional Estimates

(1) (2) (3) (4)
Mean

Adult (15-39)
years schl.

Avg.
Wealth
Index

Improved
Sanitation

HH
has

Elect.

Panel A: Log sum of nightlights - sensor, blooming, & topcode fixes

ln(minNL/2+NL) 0.365∗∗∗ 0.196∗∗∗ 0.0349∗∗∗ 0.0516∗∗∗

(0.00786) (0.00276) (0.000840) (0.000829)

Obs 21681 23224 26515 26516
Obs(NL=0) 12168 13102 14944 14945
FEs cntry-yr cntry-yr cntry-yr cntry-yr
units gcell-yr gcell-yr gcell-yr gcell-yr
R2 0.581 0.396 0.430 0.578

Panel B: Log sum of nightlights - sensor calibration only

ln(minNL/2+NL) 0.310∗∗∗ 0.171∗∗∗ 0.0321∗∗∗ 0.0430∗∗∗

(0.00694) (0.00272) (0.000762) (0.000763)

Obs 21681 23224 26515 26516
Obs(NL=0) 9630 10013 11594 11594
FEs cntry-yr cntry-yr cntry-yr cntry-yr
units gcell-yr gcell-yr gcell-yr gcell-yr
R2 0.572 0.379 0.434 0.558

Panel C: lit dummy - sensor, blooming, & topcode fixes

1(NL>0) 1.745∗∗∗ 0.947∗∗∗ 0.178∗∗∗ 0.237∗∗∗

(0.0454) (0.0189) (0.00512) (0.00525)

Obs 21681 23224 26515 26516
Obs(NL=0) 12168 13102 14944 14945
FEs cntry-yr cntry-yr cntry-yr cntry-yr
units gcell-yr gcell-yr gcell-yr gcell-yr
R2 0.546 0.298 0.412 0.513

Panel D: lit dummy - sensor calibration only

1(NL>0) 1.542∗∗∗ 0.856∗∗∗ 0.173∗∗∗ 0.204∗∗∗

(0.0433) (0.0181) (0.00513) (0.00471)

Obs 21681 23224 26515 26516
Obs(NL=0) 9630 10013 11594 11594
FEs cntry-yr cntry-yr cntry-yr cntry-yr
units gcell-yr gcell-yr gcell-yr gcell-yr
R2 0.531 0.259 0.409 0.486

Note: This table presents regressions of economic indicators from the DHS on nightlights. Observations are 0.25 x
0.25 degree gridcell-years. Each panel is done with a different definition for nightlights: Panel A uses the log sum of
nightlights that have been adjusted for cross-sensor calibration and to fix blooming and topcoding, panel B uses the
log of sum nightlights that have only been adjusted for cross-sensor calibration, Panel C uses a dummy if the cell is
lit based on nightlights that have been adjusted for cross-sensor calibration and to fix blooming and topcoding, and
Panel D uses a dummy if the cell is lit based on nightlights that have been adjusted for cross-sensor calibration. All
specifications include the log area of the cell, and fixed effects for country-year. Standard errors in parentheses are
clustered at the gridcell level. ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Table B10: DHS Panel Estimates

(1) (2) (3) (4)
Mean

Adult (15-39)
years schl.

Avg.
Wealth
Index

Improved
Sanitation

HH
has

Elect.

Panel A: Log sum of nightlights - sensor, blooming, & topcode fixes

ln(minNL/2+NL) 0.0493∗∗∗ 0.0176∗∗∗ 0.000858 0.0153∗∗∗

(0.0117) (0.00499) (0.00152) (0.00167)

Obs 17454 19089 22472 22472
Obs(NL=0) 8777 9818 11674 11674
FEs cntry-yr cntry-yr cntry-yr cntry-yr
units gcell-yr gcell-yr gcell-yr gcell-yr
R2 0.888 0.781 0.799 0.791

Panel B: Log sum of nightlights - sensor calibration only

ln(minNL/2+NL) 0.0248∗∗∗ 0.00918∗∗ 0.00266∗∗ 0.00640∗∗∗

(0.00882) (0.00376) (0.00118) (0.00120)

Obs 17454 19089 22472 22472
Obs(NL=0) 6674 7167 8729 8729
FEs cntry-yr cntry-yr cntry-yr cntry-yr
units gcell-yr gcell-yr gcell-yr gcell-yr
R2 0.888 0.781 0.799 0.790

Panel C: lit dummy - sensor, blooming, & topcode fixes

1(NL>0) 0.0988∗∗ 0.0390∗∗ 0.00598 0.0213∗∗∗

(0.0452) (0.0194) (0.00601) (0.00646)

Obs 17454 19089 22472 22472
Obs(NL=0) 8777 9818 11674 11674
FEs cntry-yr cntry-yr cntry-yr cntry-yr
units gcell-yr gcell-yr gcell-yr gcell-yr
R2 0.888 0.781 0.799 0.790

Panel D: lit dummy - sensor calibration only

1(NL>0) 0.0133 0.00974 0.0119∗∗ -0.000145
(0.0406) (0.0173) (0.00544) (0.00538)

Obs 17454 19089 22472 22472
Obs(NL=0) 6674 7167 8729 8729
FEs cntry-yr cntry-yr cntry-yr cntry-yr
units gcell-yr gcell-yr gcell-yr gcell-yr
R2 0.888 0.781 0.799 0.790

Note: This table presents regressions of economic indicators from the DHS on nightlights. Observations are 0.25 x
0.25 degree gridcell-years. Each panel is done with a different definition for nightlights: Panel A uses the log sum of
nightlights that have been adjusted for cross-sensor calibration and to fix blooming and topcoding, panel B uses the
log of sum nightlights that have only been adjusted for cross-sensor calibration, Panel C uses a dummy if the cell is
lit based on nightlights that have been adjusted for cross-sensor calibration and to fix blooming and topcoding, and
Panel D uses a dummy if the cell is lit based on nightlights that have been adjusted for cross-sensor calibration. All
specifications include fixed effects for country-year, and gridcell. Standard errors in parentheses are clustered at the
gridcells level. ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Figure B6: Schooling-Luminosity Correlation. Further Evidence

(a) Cross-sectional, varying Spatial Unit size (b) Panel, varying Spatial Unit size

(c) Cross-sectional, varying FE size (d) Panel, varying FE size

The figure plots coefficients from regressions associating mean years of schooling of individuals aged 15-39 on Log

Luminosity. Panels (a) and (c) give cross-sectional estimates with country-survey year constants, controlling also

for the gridcell’s log land area. Panels (b) and (d) give panel estimates that, besides the country-year constants,

also include gridcell fixed effects. Panels (a)-(b) plot coefficients of log luminosity varying the (gridcell) size unit of

the empirical analysis. Panel (c) plots cross-sectional coefficients of log luminosity augmenting the specification with

block fixed effects of various sizes. Panel (d) plots panel coefficients of log luminosity augmenting the specification

with interactions between country-survey-year constants with block fixed effects of various sizes. Red markers denote

estimates using the harmonized VIIRS-DMSP luminosity series, adjusting the DMSP for top coding, sensor calibra-

tion, and blooming. Blue markers denote estimates using the unadjusted merged VIIRS-DMSP luminosity series.

The bars denote 95% confidence intervals, based on standard errors clustered at the gridcell level for panels (c) and

(d) and at the spatial unit level for panels (a) and (b).
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Figure B7: Household Access to Electricity-Luminosity Correlation. Further Evidence

(a) Cross-sectional, varying Spatial Unit size (b) Panel, varying Spatial Unit size

(c) Cross-sectional, varying FE size (d) Panel, varying FE size

The figure plots coefficients from regressions associating household access to electricity on Log Luminosity. Panels

(a) and (c) give cross-sectional estimates with country-survey year constants, controlling also for the gridcell’s log

land area. Panels (b) and (d) give panel estimates that, besides the country-year constants, also include gridcell fixed

effects. Panels (a)-(b) plot coefficients of log luminosity varying the (gridcell) size unit of the empirical analysis. Panel

(c) plots cross-sectional coefficients of log luminosity augmenting the specification with block fixed effects of various

sizes. Panel (d) plots panel coefficients of log luminosity augmenting the specification with interactions between

country-survey-year constants with block fixed effects of various sizes. Red markers denote estimates using the

harmonized VIIRS-DMSP luminosity series, adjusting the DMSP for top coding, sensor calibration, and blooming.

Blue markers denote estimates using the unadjusted merged VIIRS-DMSP luminosity series. The bars denote 95%

confidence intervals, based on standard errors clustered at the gridcell level for panels (c) and (d) and at the spatial

unit level for panels (a) and (b).
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Figure B8: Household Access to Improved Sanitation-Luminosity Correlation. Further Evidence

(a) Cross-sectional, varying Spatial Unit size (b) Panel, varying Spatial Unit size

(c) Cross-sectional, varying FE size (d) Panel, varying FE size

The figure plots coefficients from regressions associating household access to improved sanitation facilities on Log

Luminosity. Panels (a) and (c) give cross-sectional estimates with country-survey year constants, controlling also

for the gridcell’s log land area. Panels (b) and (d) give panel estimates that, besides the country-year constants,

also include gridcell fixed effects. Panels (a)-(b) plot coefficients of log luminosity varying the (gridcell) size unit of

the empirical analysis. Panel (c) plots cross-sectional coefficients of log luminosity augmenting the specification with

block fixed effects of various sizes. Panel (d) plots panel coefficients of log luminosity augmenting the specification

with interactions between country-survey-year constants with block fixed effects of various sizes. Red markers denote

estimates using the harmonized VIIRS-DMSP luminosity series, adjusting the DMSP for top coding, sensor calibra-

tion, and blooming. Blue markers denote estimates using the unadjusted merged VIIRS-DMSP luminosity series.

The bars denote 95% confidence intervals, based on standard errors clustered at the gridcell level for panels (c) and

(d) and at the spatial unit level for panels (a) and (b).
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Figure B9: Local (standardized) Development-Luminosity Correlation. DHS comparing all fixes

(a) Cross-sectional Estimates - Log Nightlights (b) Cross-sectional Estimates - Lit Indicator

(c) Panel Estimates - Log Nightlights (d) Panel Estimates - Lit Indicator

The figure plots coefficients from regressions associating proxies of development from the Demographic and Health

Surveys (DHS) on night-time lights (luminosity). We break down the two major adjustments we make (blooming

and topcoding corrections). Panels (a) and (c) use log luminosity; panels (b) and (d) use an indicator that equals one

when the gridcell is lit and zero otherwise. Panels (a) and (b) control for country-survey-year fixed effects and log

cell area. Panels (c) and (d) also include gridcell fixed effects. All outcome variables, mean years of schooling of the

population aged 15-39, a composite wealth index, and access to improved sanitation and electricity are standardized

to have a mean of zero and a standard deviation of one. The bars give 95% confidence intervals based on standard

errors clustered at the gridcell level.
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B.3 Country Case Studies. Further Evidence

This Section provides summary statistics, details, and additional evidence of the country case

studies reported in Section 5 of the main paper.

B.3.1 Mozambique Census

Summary Statistics Appendix Table B11 gives summary statistics of local development mea-

sures and nighttime luminosity across Mozambican localities (admin-4 units). We proxy local

development with the mean years of schooling of the population aged 15-39 years, as recorded in

the Censuses of 1997, 2007, and 2017; and with the share of employment outside agriculture for

15-24 years old, using information from the 1997 and 2007 Censuses (as the data is missing for

the 2017 Censuses). We take the mean values among the young, as in the panel estimates, since

we want to capture the “flow” of these variables more accurately. We have information for the

full census for 1997, 2007, and 2017. The table gives summary statistics of various luminosity

transformations using the newly-compiled harmonized and adjusted VIIRS-DMSP series and with

the merged VIIRS-DMSP series without adjusting the later for top-coding and blooming. Panel A

gives the statistics pooling across all census years. Panels B, C, and D give the statistics for the

1997, the 2007, and the 2017 Census, respectively.

Cross-Sectional Estimates Appendix Tables B12 and B13 report cross-sectional estimates as-

sociating mean years of schooling of the population aged 15-39 years and the share of youth em-

ployment outside agriculture with log luminosity and a lit indicator, respectively across the census

years. Panel A gives estimates across admin-2 units (distritos). Panel B gives estimates across

admin-3 units (postos). Panel C gives estimates across admin-4 units (localidades). All specifica-

tions condition on log land area and census-year constants. Panel A conditions also on census-year

specific admin-1 (province) fixed-effects. Panel B conditions also on census-year specific admin-2

(district) fixed-effects. Panel C conditions also on census-year specific admin-3 (posto) fixed-effects.

The estimates suggest that employment outside of agriculture is about 10 percentage points and

mean schooling about 0.6 years higher in lit admin-2, admin-3, or admin-4 units than unlit ones.

Panel Estimates Appendix Tables B14 and B15 report panel estimates that explore the dynamic

correlation between local development and luminosity across Mozambican administrative units. All

specifications include administrative unit fixed effects and census year fixed effects. Panel A gives

estimates across admin-2 units (districts). Panel B gives estimates across admin-3 units (postos).

Panel C gives estimates across admin-4 units (localities). Panel A conditions also on census-year

specific admin-1 (province) fixed-effects. Panel B conditions also on census-year specific admin-2

(district) fixed-effects. Panel C conditions also on census-year specific admin-3 (posto) fixed-effects.
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The estimates suggest an increase in mean years of schooling of about 0.25−0.37 and an increase of

non-agriculture employment of about three percentage points for localities that turn lit than those

that stay unlit.

Visual Illustration. Dynamic Correlation Appendix Figure B10 illustrates the within-

locality co-movement of luminosity and mean years of schooling of 15-39 year-old Mozambicans

over 1997−2007 (panels (a)-(b)) and 1997−2017 (panels (c)-(d)). The green bars plot the increase

in schooling across 1, 028 unlit in 1997 localities. Dark green bars in panel (a) reveal an increase in

average schooling of 2.3 years in the 89 localities that turned lit by 2007, much higher than in the

939 localities that remained unlit by 2007 (1.76). The difference in schooling between initially unlit

locations that either stay unlit or turn lit over the twenty years (2017 − 1997) in panel (c) is 0.5

years (4.26 vs 3.85). Blue bars plot the increase in mean schooling for the 98 localities lit in 1997.

Schooling increased by 2.44 years for the 85 that remained lit in 1997, while schooling increased by

2 years in the 13 localities that turned unlit by 2007. Panels (b) and (d) plot changes in schooling

years for the four categories of localities [unlit - unlit (light green), unlit - lit (dark green), lit -

unlit (light blue) and lit - lit (dark blue), conditional on admin-3 fixed effects, to control for the

considerable differences in local development across Mozambique and compare nearby localities.

Differences in schooling correlate with differences in nighttime lights.
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Table B11: Descriptive Statistics - Mozambique census and nightlights

Min p10 p50 p90 Max Mean SD N

Panel A: 1997, 2007, and 2017
Sensor, blooming, & topcode fixes 0.00 0.00 0.00 26.00 18,981.00 50.85 560.15 3378
Sensor calibration only 0.00 0.00 0.00 160.00 20,307.00 104.36 709.31 3378
Log of sensor, blooming, & topcode fixes -0.69 -0.69 -0.69 3.28 9.85 0.09 1.81 3378
Log of sensor calibration only -0.69 -0.69 -0.69 5.08 9.92 0.75 2.47 3378
Sensor, blooming, & topcode fixes (dummy) 0.00 0.00 0.00 1.00 1.00 0.19 0.39 3378
Sensor calibration only (dummy) 0.00 0.00 0.00 1.00 1.00 0.28 0.45 3378
Gridcell area in km2 0.96 86.17 416.78 1,458.47 8,349.15 668.26 854.70 3378
Log of gridcell area in km2 -0.04 4.46 6.03 7.29 9.03 5.91 1.19 3378
Years of adult (15-40) schooling 0.04 0.47 2.45 5.53 8.70 2.82 1.95 3377
Share of youth (15-24) emp. out agriculture 0.00 0.02 0.09 0.34 0.99 0.15 0.16 2252

Panel B: 1997
Sensor, blooming, & topcode fixes 0.00 0.00 0.00 0.00 5,378.00 15.09 204.16 1126
Sensor calibration only 0.00 0.00 0.00 24.00 7,898.00 36.55 339.22 1126
Log of sensor, blooming, & topcode fixes -0.69 -0.69 -0.69 -0.69 8.59 -0.37 1.17 1126
Log of sensor calibration only -0.69 -0.69 -0.69 3.20 8.97 -0.02 1.78 1126
Sensor, blooming, & topcode fixes (dummy) 0.00 0.00 0.00 0.00 1.00 0.09 0.28 1126
Sensor calibration only (dummy) 0.00 0.00 0.00 1.00 1.00 0.14 0.34 1126
Gridcell area in km2 0.96 86.17 416.78 1,458.47 8,349.15 668.26 854.96 1126
Log of gridcell area in km2 -0.04 4.46 6.03 7.29 9.03 5.91 1.19 1126
Years of adult (15-40) schooling 0.04 0.27 0.68 1.78 4.66 0.89 0.68 1126
Share of youth (15-24) emp. out agriculture 0.00 0.02 0.07 0.29 0.99 0.12 0.14 1126

Panel C: 2007
Sensor, blooming, & topcode fixes 0.00 0.00 0.00 16.00 9,338.00 36.61 417.80 1126
Sensor calibration only 0.00 0.00 0.00 113.00 12,824.00 83.00 617.70 1126
Log of sensor, blooming, & topcode fixes -0.69 -0.69 -0.69 2.80 9.14 -0.05 1.65 1126
Log of sensor calibration only -0.69 -0.69 -0.69 4.73 9.46 0.48 2.31 1126
Sensor, blooming, & topcode fixes (dummy) 0.00 0.00 0.00 1.00 1.00 0.15 0.36 1126
Sensor calibration only (dummy) 0.00 0.00 0.00 1.00 1.00 0.22 0.41 1126
Gridcell area in km2 0.96 86.17 416.78 1,458.47 8,349.15 668.26 854.96 1126
Log of gridcell area in km2 -0.04 4.46 6.03 7.29 9.03 5.91 1.19 1126
Years of adult (15-40) schooling 0.32 1.53 2.46 4.48 7.25 2.75 1.19 1126
Share of youth (15-24) emp. out agriculture 0.01 0.03 0.11 0.38 0.97 0.17 0.17 1126

Panel D: 2017
Sensor, blooming, & topcode fixes 0.00 0.00 0.00 81.00 18,981.00 100.86 849.49 1126
Sensor calibration only 0.00 0.00 0.00 326.00 20,307.00 193.53 1,000.32 1126
Log of sensor, blooming, & topcode fixes -0.69 -0.69 -0.69 4.40 9.85 0.69 2.27 1126
Log of sensor calibration only -0.69 -0.69 -0.69 5.79 9.92 1.78 2.84 1126
Sensor, blooming, & topcode fixes (dummy) 0.00 0.00 0.00 1.00 1.00 0.32 0.47 1126
Sensor calibration only (dummy) 0.00 0.00 0.00 1.00 1.00 0.49 0.50 1126
Gridcell area in km2 0.96 86.17 416.78 1,458.47 8,349.15 668.26 854.96 1126
Log of gridcell area in km2 -0.04 4.46 6.03 7.29 9.03 5.91 1.19 1126
Years of adult (15-40) schooling 0.66 3.14 4.81 6.48 8.70 4.83 1.34 1125

Note: This table presents summary statistics for the Mozambique census and nightlights database. The observations
are at the admin 4 level. The total number of localities available is 1126. For the log of nightlights we take ((half of
the minimum value of positive NL) + NL) before taking the log.
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Table B12: Mozambique Cross-Sectional Estimates

Sensor, Blooming, & Topcode Fixes Sensor Calibration Only

(1) (2) (3) (4) (5) (6)
Mean
Adult
(15-39)

years schl.
(97&07)

Share
Youth
(15-24)

Emp. out Ag.
(97&07)

Mean
Adult
(15-39)

years schl.
(17 only)

Mean
Adult
(15-39)

years schl.
(97&07)

Share
Youth
(15-24)

Emp. out Ag.
(97&07)

Mean
Adult
(15-39)

years schl.
(17 only)

Panel A: Admin Level 2

ln(minNL/2+NL) 0.193∗∗∗ 0.0252∗∗∗ 0.0461 0.209∗∗∗ 0.0270∗∗∗ 0.0475
(0.0252) (0.00436) (0.0597) (0.0263) (0.00478) (0.0926)

Obs 282 282 141 282 282 141
Obs(NL=0) 157 157 19 132 132 3
FEs cntry-yr cntry-yr cntry-yr cntry-yr cntry-yr cntry-yr
units adm2-yr adm2-yr adm2-yr adm2-yr adm2-yr adm2-yr
R2 0.842 0.721 0.183 0.840 0.717 0.180

Panel B: Admin Level 3

ln(minNL/2+NL) 0.181∗∗∗ 0.0325∗∗∗ 0.212∗∗∗ 0.132∗∗∗ 0.0213∗∗∗ 0.165∗∗∗

(0.0181) (0.00327) (0.0244) (0.0136) (0.00233) (0.0193)

Obs 774 774 387 774 774 387
Obs(NL=0) 627 627 201 560 560 125
FEs adm2-yr adm2-yr adm2-yr adm2-yr adm2-yr adm2-yr
units adm3-yr adm3-yr adm3-yr adm3-yr adm3-yr adm3-yr
R2 0.916 0.775 0.583 0.916 0.759 0.569

Panel C: Admin Level 4

ln(minNL/2+NL) 0.215∗∗∗ 0.0360∗∗∗ 0.170∗∗∗ 0.138∗∗∗ 0.0218∗∗∗ 0.146∗∗∗

(0.0265) (0.00458) (0.0325) (0.0157) (0.00287) (0.0248)

Obs 2124 2124 1061 2124 2124 1061
Obs(NL=0) 1901 1901 734 1778 1778 548
FEs adm3-yr adm3-yr adm3-yr adm3-yr adm3-yr adm3-yr
units adm4-yr adm4-yr adm4-yr adm4-yr adm4-yr adm4-yr
R2 0.894 0.782 0.614 0.894 0.778 0.622

Note: This table presents regressions of economic indicators from the Mozambique census on nightlights. Each
panel is done at a different administrative level: panel A used admin 2 units, panel B admin 3, and panel C admin
4. Columns 1-3 use nightlights that have been adjusted for cross-sensor calibration including the downgrading of
VIIRS. Columns 4-6 use nightlights that have also been adjusted to fix blooming and topcoding. All specifications
include nightlights as the log sum of light in a district, the log area of the district, and fixed effects for year
interacted with the admin unit one level above (e.g. in panel C, units are admin 4 and so we include admin 3 by year
fixed effects). Standard errors in parentheses are clustered at the admin 2 level. ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Table B13: Mozambique Cross-Sectional Estimates - Lit Indicator

Sensor, Blooming, & Topcode Fixes Sensor Calibration Only

(1) (2) (3) (4) (5) (6)
Mean
Adult
(15-39)

years schl.
(97&07)

Share
Youth
(15-24)

Emp. out Ag.
(97&07)

Mean
Adult
(15-39)

years schl.
(17 only)

Mean
Adult
(15-39)

years schl.
(97&07)

Share
Youth
(15-24)

Emp. out Ag.
(97&07)

Mean
Adult
(15-39)

years schl.
(17 only)

Panel A: Admin Level 2

1(NL>0) 0.663∗∗∗ 0.0819∗∗∗ 0.829∗∗∗ 0.648∗∗∗ 0.0868∗∗∗ 0.314
(0.122) (0.0213) (0.293) (0.113) (0.0209) (0.356)

Obs 282 282 141 282 282 141
Obs(NL=0) 157 157 19 132 132 3
FEs cntry-yr cntry-yr cntry-yr cntry-yr cntry-yr cntry-yr
units adm2-yr adm2-yr adm2-yr adm2-yr adm2-yr adm2-yr
R2 0.787 0.664 0.214 0.786 0.669 0.178

Panel B: Admin Level 3

1(NL>0) 0.655∗∗∗ 0.111∗∗∗ 0.865∗∗∗ 0.576∗∗∗ 0.0869∗∗∗ 0.671∗∗∗

(0.0800) (0.0149) (0.118) (0.0775) (0.0124) (0.127)

Obs 774 774 387 774 774 387
Obs(NL=0) 627 627 201 560 560 125
FEs adm2-yr adm2-yr adm2-yr adm2-yr adm2-yr adm2-yr
units adm3-yr adm3-yr adm3-yr adm3-yr adm3-yr adm3-yr
R2 0.906 0.744 0.549 0.903 0.730 0.516

Panel C: Admin Level 4

1(NL>0) 0.610∗∗∗ 0.0954∗∗∗ 0.657∗∗∗ 0.551∗∗∗ 0.0840∗∗∗ 0.627∗∗∗

(0.0799) (0.0131) (0.128) (0.0724) (0.0138) (0.119)

Obs 2124 2124 1061 2124 2124 1061
Obs(NL=0) 1901 1901 734 1778 1778 548
FEs adm3-yr adm3-yr adm3-yr adm3-yr adm3-yr adm3-yr
units adm4-yr adm4-yr adm4-yr adm4-yr adm4-yr adm4-yr
R2 0.888 0.766 0.608 0.889 0.767 0.610

Note: This table presents regressions of economic indicators from the Mozambique census on nightlights. Each
panel is done at a different administrative level: panel A used admin 2 units, panel B admin 3, and panel C admin
4. Columns 1-3 use nightlights that have been adjusted for cross-sensor calibration including the downgrading of
VIIRS. Columns 4-6 use nightlights that have also been adjusted to fix blooming and topcoding. All specifications
include nightlights as an indicator for positive values of luminosity, the log area of the district, and fixed effects for
year interacted with the admin unit one level above (e.g. in panel C, units are admin 4 and so we include admin 3
by year fixed effects). Standard errors in parentheses are clustered at the admin 2 level. ∗p < 0.1, ∗∗p < 0.05,
∗∗∗p < 0.01.
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Table B14: Mozambique Panel Estimates

Sensor, Blooming, & Topcode Fixes Sensor Calibration Only

(1) (2) (3) (4) (5) (6)
Mean
Adult
(15-39)

years schl.
(97&07)

Share
Youth
(15-24)

Emp. out Ag.
(97&07)

Mean
Adult
(15-39)

years schl.
(97,07&17)

Mean
Adult
(15-39)

years schl.
(97&07)

Share
Youth
(15-24)

Emp. out Ag.
(97&07)

Mean
Adult
(15-39)

years schl.
(97,07&17)

Panel A: Admin Level 2

ln(minNL/2+NL) 0.0347∗∗ 0.00395∗ 0.115∗∗∗ 0.0276∗ 0.00343 0.145∗∗∗

(0.0156) (0.00211) (0.0384) (0.0160) (0.00218) (0.0537)

Obs 282 282 423 282 282 423
Obs(NL=0) 157 157 176 132 132 135
FEs cntry-yr cntry-yr cntry-yr cntry-yr cntry-yr cntry-yr
units adm2-yr adm2-yr adm2-yr adm2-yr adm2-yr adm2-yr
R2 0.983 0.982 0.869 0.983 0.982 0.869

Panel B: Admin Level 3

ln(minNL/2+NL) 0.0555∗∗∗ 0.0101∗∗∗ 0.0957∗∗∗ 0.0268∗ 0.00396∗ 0.0504∗∗∗

(0.0178) (0.00281) (0.0196) (0.0142) (0.00202) (0.0167)

Obs 774 774 1161 774 774 1161
Obs(NL=0) 627 627 828 560 560 685
FEs adm2-yr adm2-yr adm2-yr adm2-yr adm2-yr adm2-yr
units adm3-yr adm3-yr adm3-yr adm3-yr adm3-yr adm3-yr
R2 0.987 0.971 0.962 0.987 0.970 0.961

Panel C: Admin Level 4

ln(minNL/2+NL) 0.102∗∗∗ 0.0148∗∗∗ 0.0778∗∗∗ 0.0743∗∗∗ 0.00707∗∗ 0.0571∗∗∗

(0.0243) (0.00405) (0.0245) (0.0136) (0.00275) (0.0178)

Obs 2124 2124 3185 2124 2124 3185
Obs(NL=0) 1901 1901 2635 1778 1778 2326
FEs adm3-yr adm3-yr adm3-yr adm3-yr adm3-yr adm3-yr
units adm4-yr adm4-yr adm4-yr adm4-yr adm4-yr adm4-yr
R2 0.978 0.966 0.963 0.978 0.965 0.963

Panel D: Admin Level 4 - No FEs

ln(minNL/2+NL) 0.163∗∗∗ 0.0161∗∗∗ 0.0753∗∗∗ 0.125∗∗∗ 0.0100∗∗∗ 0.0801∗∗∗

(0.0238) (0.00371) (0.0169) (0.0167) (0.00180) (0.0119)

Obs 2250 2250 3374 2250 2250 3374
Obs(NL=0) 1976 1976 2744 1848 1848 2420
FEs cntry-yr cntry-yr cntry-yr cntry-yr cntry-yr cntry-yr
units adm4-yr adm4-yr adm4-yr adm4-yr adm4-yr adm4-yr
R2 0.942 0.937 0.907 0.944 0.936 0.908

Note: This table presents regressions of economic indicators from the Mozambique census on nightlights. Each
panel is done at a different administrative level: panel A used admin 2 units, panel B admin 3, panel C admin 4,
panel D also uses admin 4 units but does not add fixed effects for admin 3 by year. Columns 1-3 use nightlights
that have been adjusted for cross-sensor calibration including the downgrading of VIIRS. Columns 4-6 use
nightlights that have also been adjusted to fix blooming and topcoding. All specifications include nightlights as the
log sum of light in a district and fixed effects for year interacted with the admin unit one level above (e.g. in panel
C, units are admin 4 and so we include admin 3 by year fixed effects). Also included are fixed effects for the admin
level denoted in the panel title, and therefore these coefficients reflect changes. Standard errors in parentheses are
clustered at the admin 2 level. ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Table B15: Mozambique Panel Estimates - Lit Indicator

Sensor, Blooming, & Topcode Fixes Sensor Calibration Only

(1) (2) (3) (4) (5) (6)
Mean
Adult
(15-39)

years schl.
(97&07)

Share
Youth
(15-24)

Emp. out Ag.
(97&07)

Mean
Adult
(15-39)

years schl.
(97,07&17)

Mean
Adult
(15-39)

years schl.
(97&07)

Share
Youth
(15-24)

Emp. out Ag.
(97&07)

Mean
Adult
(15-39)

years schl.
(97,07&17)

Panel A: Admin Level 2

1(NL>0) 0.0787 0.00661 0.518∗∗∗ 0.0565 0.00914 0.407∗∗

(0.0620) (0.00821) (0.166) (0.0646) (0.00881) (0.187)

Obs 282 282 423 282 282 423
Obs(NL=0) 157 157 176 132 132 135
FEs cntry-yr cntry-yr cntry-yr cntry-yr cntry-yr cntry-yr
units adm2-yr adm2-yr adm2-yr adm2-yr adm2-yr adm2-yr
R2 0.982 0.982 0.870 0.982 0.982 0.868

Panel B: Admin Level 3

1(NL>0) 0.0805 0.0177 0.232∗∗ 0.0539 0.00754 0.0728
(0.0786) (0.0108) (0.0949) (0.0720) (0.0109) (0.0913)

Obs 774 774 1161 774 774 1161
Obs(NL=0) 627 627 828 560 560 685
FEs adm2-yr adm2-yr adm2-yr adm2-yr adm2-yr adm2-yr
units adm3-yr adm3-yr adm3-yr adm3-yr adm3-yr adm3-yr
R2 0.987 0.970 0.961 0.987 0.970 0.961

Panel C: Admin Level 4

1(NL>0) 0.186∗∗ 0.0257∗∗ 0.228∗∗∗ 0.271∗∗∗ 0.0241∗∗ 0.226∗∗∗

(0.0780) (0.0124) (0.0830) (0.0574) (0.0117) (0.0806)

Obs 2124 2124 3185 2124 2124 3185
Obs(NL=0) 1901 1901 2635 1778 1778 2326
FEs adm3-yr adm3-yr adm3-yr adm3-yr adm3-yr adm3-yr
units adm4-yr adm4-yr adm4-yr adm4-yr adm4-yr adm4-yr
R2 0.978 0.964 0.963 0.978 0.964 0.963

Panel D: Admin Level 4 - No FEs

1(NL>0) 0.356∗∗∗ 0.0276∗∗ 0.309∗∗∗ 0.459∗∗∗ 0.0344∗∗∗ 0.345∗∗∗

(0.0712) (0.0109) (0.0581) (0.0730) (0.00813) (0.0565)

Obs 2250 2250 3374 2250 2250 3374
Obs(NL=0) 1976 1976 2744 1848 1848 2420
FEs cntry-yr cntry-yr cntry-yr cntry-yr cntry-yr cntry-yr
units adm4-yr adm4-yr adm4-yr adm4-yr adm4-yr adm4-yr
R2 0.940 0.934 0.907 0.942 0.935 0.908

Note: This table presents regressions of economic indicators from the Mozambique census on nightlights. Each
panel is done at a different administrative level: panel A used admin 2 units, panel B admin 3, panel C admin 4,
panel D also uses admin 4 units but does not add fixed effects for admin 3 by year. Columns 1-3 use nightlights
that have been adjusted for cross-sensor calibration including the downgrading of VIIRS. Columns 4-6 use
nightlights that have also been adjusted to fix blooming and topcoding. All specifications include nightlights as an
indicator for positive values of luminosity and fixed effects for year interacted with the admin unit one level above
(e.g. in panel C, units are admin 4 and so we include admin 3 by year fixed effects). Also included are fixed effects
for the admin level denoted in the panel title, and therefore these coefficients reflect changes. Standard errors in
parentheses are clustered at the admin 2 level. ∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Figure B10: Mozambique ∆ Mean Years Schooling by Changes in Lit/Unlit

(a) 1997-2007 (b) 1997-2007 (residuals)

(c) 1997-2017 (d) 1997-2017 (residuals)

The figure plots the change in average years of schooling for 15-39 year-olds by changes in the extensive margin of

luminosity across Mozambican localities (admin-4 units). Green bars plot the mean years of schooling change for

initially unlit localities. Dark green bars plot the change in schooling for localities that are turning lit, while light

green bars plot the change in schooling for localities remaining unlit. Blue bars plot the mean years of schooling

change for initially lit localities. Dark blue bars plot the change in schooling for localities that remain lit, while light

blue bars plot the change for localities that turn from lit to unlit. Panels (a) and (c) plot unconditional changes in

mean schooling years over 1997 and 2007 and over 1997 and 2017, respectively; panels (b) and (d) plot changes in

mean years of schooling over 1997-2007 and 1997-2017, conditional on admin-3 fixed effects.
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B.3.2 Indonesia

Below, we report summary statistics and additional evidence of the analysis that explores the cross-

sectional and panel association between luminosity and local development across more than 60, 000

Indonesian villages using the PODES data. Appendix Figure B11 gives a visual illustration.

Summary Statistics Appendix Table B16 presents summary statistics of various public goods

provision measures, as well as the first principal components, which aggregate the variation, and

nighttime lights across Indonesian villages, encompassing all PODES surveys from the mid-1990s

to 2018. It also reports the summary statistics for the same variables at the admin-3 and admin-2

levels.

Figure B11: Spatial Distribution of Indonesian Villages (DESA) Level.

(a) Full Sample.

(b) Jawa Barat Province

Notes: The Figure reports the spatial distribution of villages (DESA) across Indonesia (Panel (a)). Panel (b) zooms

into the province of Jawa Barat, West of Java and south of Jakarta.

Further Evidence. Localized Variation Appendix Figure B12 reproduces the analysis in

Figure 7 with the first principal component (PC1) of the numerous public goods measures from

the PODES. In our sample, we have 3, 737 admin-3 units and the average number of village per

admin-3 unit is 25.28; we also count 311 (28) admin-2 (admin-1) units, containing on average

329.58 (4540.56) villages. The panel labeled PC1 – level 3 reports coefficients for the adjusted and

unadjusted night-lights series estimated with village fixed effects and admin-3-by-year fixed effects.

The specifications labeled PC1–admin-level-2 include village constants and admin-2-by-year fixed

effects, while the models labeled PC - level 1 include village fixed effects and admin-1-by-year fixed

effects. The adjusted for top-coding, blooming, and sensor quality DMSP series fused to a downward

VIIRS post 2013 are significantly more important correlates of the local public goods proxy (the

principal component). As in the analysis with DHS data across dozens of African countries and

the Mozambique-based analysis, the adjusted series perform way better in panel estimation, which
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often magnifies error-in-variables.

Further Evidence. Spatial Aggregation Appendix Figures B13 and B14 report cross-sectional

(panels (a)-(b)) and panel (panels (c)-(d)) estimates associating the various public goods measures

to the log luminosity and an indicator that takes the value of one for lit villages across the 3, 737

admin-3 and the 311 admin-2 units, respectively. Panels (a) and (b) control for log area of the

corresponding unit of observation and the survey-year fixed effects. Panels (c) and (d) control for

the admin-level fixed-effects are interacted with survey-year fixed-effects. Two results stand out.

First, a significantly positive correlation between the adjusted and harmonized luminosity series

and most public goods measures emerges with both transformations of luminosity, both when ex-

ploring within-admin-2 and within-admin-3 variation. Second, in line with the DHS evidence in

Section 4.4.1, the adjusted and harmonized luminosity series correlate more strongly with local

development at more granular units of observation compared to the unadjusted DMSP nighttime

data.
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Table B16: Summary Statistics by Administrative Level

Panel A: Village (Desa) Level
Obs Mean SD Min Max

Log of Sensor, blooming, & topcode fixes 492808 -4.28 5.48 -10.13 5.88
Log of Sensor calibration only 492808 -2.09 5.52 -10.09 4.14
Lit (dummy) Sensor, blooming, & topcode fixes 492808 0.55 0.50 0.00 1.00
Lit (dummy) Sensor calibration only 492808 0.69 0.46 0.00 1.00
Garbage Disposal 479041 0.00 1.00 -0.37 2.72
Use Toilet 479041 0.00 1.00 -1.50 0.67
Access drinking water 479041 -0.00 1.00 -0.42 2.40
Gas/electricity for cooking 479041 -0.00 1.00 -0.56 1.81
Any paved road 479040 -0.00 1.00 -2.85 0.36
Any doctor 479041 0.00 1.00 -0.49 2.09
Any modern public health facility 479041 -0.00 1.00 -0.38 2.73
Number of kindergartens 492808 0.00 1.00 -0.60 47.59
Number of primary schools 492808 -0.00 1.00 -1.03 37.91
Number of middle schools 492808 0.00 1.00 -0.59 22.46
Number of high schools 492808 0.00 1.00 -0.35 59.44
Panel B: Admin-3 (Kecamatan) Level.

Obs Mean SD Min Max
Log of Sensor, blooming, & topcode fixes 29896 -2.27 5.15 -11.65 5.69
Log of Sensor calibration only 29896 -0.01 4.06 -10.87 4.14
Lit (dummy) Sensor, blooming, & topcode fixes 29896 0.81 0.39 0.00 1.00
Lit (dummy) Sensor calibration only 29896 0.91 0.29 0.00 1.00
Garbage Disposal 29677 0.00 1.00 -0.56 2.80
Use Toilet 29677 0.00 1.00 -2.11 0.82
Access drinking water 29677 -0.00 1.00 -0.64 2.91
Gas/electricity for cooking 29677 0.00 1.00 -0.64 1.89
Any paved road 29677 0.00 1.00 -4.27 0.47
Any doctor 29677 0.00 1.00 -0.95 2.87
Any modern public health facility 29677 0.00 1.00 -1.07 5.73
Number of kindergartens 29896 0.00 1.00 -0.86 18.62
Number of primary schools 29896 -0.00 1.00 -1.41 10.94
Number of middle schools 29896 0.00 1.00 -0.98 14.51
Number of high schools 29896 -0.00 1.00 -0.64 15.19
Panel C: Admin-2 (Kabupaten) Level.

Obs Mean SD Min Max
Log of Sensor, blooming, & topcode fixes 2488 -0.22 2.66 -9.73 5.45
Log of Sensor calibration only 2488 1.08 2.07 -9.05 4.14
Lit (dummy) Sensor, blooming, & topcode fixes 2488 0.99 0.08 0.00 1.00
Lit (dummy) Sensor calibration only 2488 1.00 0.07 0.00 1.00
Garbage Disposal 2478 0.00 1.00 -0.75 2.60
Use Toilet 2478 -0.00 1.00 -2.87 1.02
Access drinking water 2478 -0.00 1.00 -0.87 3.01
Gas/electricity for cooking 2478 -0.00 1.00 -0.66 2.00
Any paved road 2478 0.00 1.00 -5.26 0.67
Any doctor 2478 0.00 1.00 -1.13 2.83
Any modern public health facility 2478 -0.00 1.00 -1.18 5.58
Number of kindergartens 2488 -0.00 1.00 -0.96 9.28
Number of primary schools 2488 -0.00 1.00 -1.49 6.42
Number of middle schools 2488 -0.00 1.00 -1.07 7.78
Number of high schools 2488 0.00 1.00 -0.79 7.85

Notes: This table presents summary statistics for the nightlights and PODES database. Panel A reports the statistics at
the Village (DESA) level; Panel B provides information at the Admin-3 (Kecamatan) level; Panel C presents the descriptive
statistics at the Admin-2 (Kabupaten) level. All PODES variables are standardized
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Figure B12: Local (standardized) Development - Luminosity Association. Indonesia PODES
dataset. Alternative Admin × Year FEs.

(a) Cross-section - Log Nightlights (b) Cross-section - Lit dummy

(c) Panel - Log Nightlights (d) Panel - Lit dummy

Notes: This figure plots coefficients from regressions of the First Principal Component of the different PODES

measures on nightlights at the village (DESA) level. For the luminosity variables, panels (a) and (c) use log nightlights

and panels (b) and (d) use an indicator equal to one for positive lights and zero otherwise. Panels (a) and (b) control

for log village area, while panels (b) and (d) control for village. On top of these controls, we also control for admin-3

× period FEs (PC 1 - level 3), admin-2 × period FEs (PC 1 - level 2), and admin-1 × period FEs (PC 1 - level 1).

The red diamonds denote estimates using our corrected nightlight series, and blue squares denote estimates using the

unadjusted series. For these figures, all PODES outcomes are standardized to have a mean of zero and a standard

deviation of one. The bars represent 95% confidence intervals, and standard errors are clustered at the village level.
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Figure B13: Local (standardized) Development - Luminosity Association. Indonesia PODES
dataset. Admin-3 level.

(a) Cross-section - Log Nightlights (b) Cross-section - Lit dummy

(c) Panel - Log Nightlights (d) Panel - Lit dummy

Notes: This figure plots coefficients from regressions of PODES measures on nightlights at the admin-3 level. For the

luminosity variables, panels (a) and (c) use log nightlights, and panels (b) and (d) use an indicator equal to one for

positive lights and zero otherwise. Panels (a) and (b) control for log village area and admin-2 × survey-year fixed

effects, while panels (c) and (d) control for village and admin-3 × survey-year fixed effects. The red diamonds denote

estimates using our corrected nightlight series, and blue squares denote estimates using the unadjusted series. For

these figures, all PODES outcomes are standardized to have a mean of zero and a standard deviation of one. The

bars represent 95% confidence intervals, and standard errors are clustered at the village level.
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Figure B14: Local (standardized) Development - Luminosity Association. Indonesia PODES
dataset. Admin-2 level.

(a) Cross-section - Log Nightlights (b) Cross-section - Lit dummy

(c) Panel - Log Nightlights (d) Panel - Lit dummy

Notes: This figure plots coefficients from regressions of PODES measures on nightlights at the admin-2 level. For the

luminosity variables, panels (a) and (c) use log nightlights and panels (b) and (d) use an indicator equal to one for

positive lights and zero otherwise. Panels (a) and (b) control for log village area and admin-1 × survey-year fixed

effects, while panels (b) and (d) control for village and admin-1 × survey-year fixed effects. The red diamonds denote

estimates using our corrected nightlight series, and blue squares denote estimates using the unadjusted series. For

these figures, all PODES outcomes are standardized to have a mean of zero and a standard deviation of one. The

bars represent 95% confidence intervals, and standard errors are clustered at the village level.

B.3.3 India

Below, we report summary statistics and additional evidence from the analysis that explores the

correlation between luminosity and local development across approximately 550, 000 rural and

more than 7, 000 urban Indian municipalities, using data from the SHRUG portal and following

the analysis in Asher et al. (2021).

Summary Statistics Appendix Table B17 provides descriptive statistics for all variables used in

the Indian analysis. At the village level (Panel A), it lists the log population (from the Population

Censuses of 1991, 2001, 2011); the log total non-farm, manufacturing, and services employment

(from the Economic Censuses of 1990, 1998, 2005, 2013); and the logarithm of nighttime lights.

Panels B and C also report the same statistics after aggregating villages to the sub-district (admin-
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3) and district (admin-2) levels, respectively.

Further Evidence. Localized Variation Appendix Figure B15 reproduces the analysis in Fig-

ure 8, exploiting different batteries of admin × year FEs. On top of the more than 550, 000 villages

and towns, the dataset counts 5, 867 subdistricts (admin-3) units and the average number of village

per admin-3 unit is 93.58; we also count 623 (33) admin-2 (admin-1) units, containing on average

881.32 (16638.42) villages. The panels labeled “State FE” report coefficients for the adjusted and

unadjusted night-lights series estimated with village fixed effects and admin-1-by-year fixed effects.

The specifications labeled “Dist FE” include village constants and admin-2-by-year fixed effects,

while the models labeled “Subdist FE” include village fixed effects and admin-3-by-year fixed ef-

fects [our baseline specification in Figure 8]. Our adjusted series, which merges the corrected for

top-coding, blooming, and sensor quality DMSP series with a downgraded VIIRS post 2013, corre-

lates very strongly with the different proxies of development across the different permutations. As

in the analysis with DHS data across dozens of African countries, the Mozambique-based analysis,

and the Indonesia-based validation, the adjusted series performs way better in panel estimation,

which often magnifies error-in-variables.

Figure B15: Local Development - Luminosity Association. India (SHRUG). Village (Rural) Level.
Alternative Admin × Year FEs.

(a) Cross-Section. Village (Rural) Level. (b) Panel. Village (Rural) level.

Notes: This Figure plots coefficients from regressions of SHRUG measures on nightlights at the village (rural) level.

For the luminosity variables, all panels use log nightlights. Panel (a) controls for log town (village) area; while panel

(b) controls for village fixed effects. Specifications labeled “State FE” control for admin-1 × year FEs. Specifications

labeled “Dist FE” control for admin-2 × year FEs. Specifications labeled “Subdist FE” control for admin-3 × year

FEs. The red diamonds denote estimates using our corrected nightlight series, and blue squares denote estimates

using the unadjusted series. The bars represent 95% confidence intervals, and standard errors are clustered at the

village level.

Further Evidence. Spatial Aggregation. Appendix Figure B16 compares cross-sectional

(panels a–b) and panel (panels c–d) regressions that link log night-time lights to development
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measures from the Population and Economic Censuses. The left column covers 623 districts (admin-

2); the right column covers 5,867 sub-districts (admin-3). Cross-sectional models (a, b) control for

the log of land area, while panel models (c, d) absorb unit fixed effects. To account for local

common shocks, district regressions (a, c) include state-year dummies (admin-1 × year), and sub-

district regressions (b, d) include district-year dummies (admin-2 × year). The findings mirror

those documented for the DHS waves in Africa and Indonesia. Across specifications, coefficients

derived from the newly adjusted luminosity series (red diamonds) are consistently larger than

those based on the unadjusted data (blue squares), especially for panel estimates. This divergence

is most pronounced at finer spatial scales: estimates at the village and town level (Figure 8) are

both larger in magnitude and more precisely measured than those at the sub-district and district

level (Appendix Figure B16).
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Figure B16: Local Development - Luminosity Association. India (SHRUG). District and Subdistrict
level.

(a) Cross-Section. District level (b) Cross-Section. Subdistrict level

(c) Panel. District Level. (d) Panel. Subdistrict Level.

Notes: This figure plots coefficients from regressions of SHRUG measures on nightlights at the district and subdistrict

level. For the luminosity variables, all panels use log nightlights. Panels (a) controls for log district area and admin-1

(state) × period fixed effects; panel (b) controls for log district area and admin-2 (district) × period fixed effects;

while panels (b) and (d) control for district and subdistrict FEs as well as admin-1 (2) × period fixed effects. The

red diamonds denote estimates using our corrected nightlight series, and blue squares denote estimates using the

unadjusted series. The bars represent 95% confidence intervals, and standard errors are clustered at the town (village

level).
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Table B17: India. Summary Statistics

Panel A: District obs mean sd min max
Population Census Variables

Log of Sensor, blooming, & topcode fixes 1769 0.274 0.360 0.000 2.708
Log of Sensor calibration only 1769 0.578 0.497 0.000 2.892
Log Population 1769 13.845 1.127 8.931 16.636

Economics Census Variables
Log of Sensor, blooming, & topcode fixes 2524 0.804 0.812 0.000 5.325
Log of Sensor calibration only 2524 1.393 0.852 0.000 4.159
Log Non-Farm Employment 2524 10.559 2.341 0.000 16.062
Log Manufacturing Employment 2524 9.116 2.298 0.000 15.237
Log Services Employment 2524 10.233 2.271 0.000 15.485
Panel B: Subdistrict

Population Census Variables
Log of Sensor, blooming, & topcode fixes 16343 0.231 0.392 0.000 3.549
Log of Sensor calibration only 16343 0.523 0.537 0.000 3.865
Log Population 16343 11.473 1.142 1.386 16.636

Economics Census Variables
Log of Sensor, blooming, & topcode fixes 23608 0.663 0.802 0.000 5.365
Log of Sensor calibration only 23608 1.323 0.913 0.000 4.159
Log Non-Farm Employment 23608 8.033 2.304 0.000 16.062
Log Manufacturing Employment 23608 6.587 2.227 0.000 15.237
Log Services Employment 23608 7.680 2.231 0.000 15.485
Panel C: Town

Population Census Variables
Log of Sensor, blooming, & topcode fixes 12385 2.040 1.084 0.000 5.346
Log of Sensor calibration only 12385 2.640 0.814 0.000 4.159
Log Population 12385 10.007 1.057 4.710 15.962

Economics Census Variables
Log of Sensor, blooming, & topcode fixes 22928 0.943 0.730 0.000 4.670
Log of Sensor calibration only 22928 1.739 0.679 0.000 3.778
Log Non-Farm Employment 22928 7.346 1.508 0.000 14.227
Log Manufacturing Employment 22928 5.738 1.691 0.000 12.847
Log Services Employment 22928 6.981 1.561 0.000 14.010
Panel D: Village

Population Census Variables
Log of Sensor, blooming, & topcode fixes 1517197 0.411 0.707 0.000 5.130
Log of Sensor calibration only 1517197 1.021 0.981 0.000 4.159
Log Population 1517197 6.664 1.016 0.693 12.545

Economics Census Variables
Log of Sensor, blooming, & topcode fixes 1779715 0.358 0.689 0.000 5.059
Log of Sensor calibration only 1779715 0.960 0.973 0.000 4.159
Log Non-Farm Employment 1779715 3.081 1.484 0.000 12.206
Log Manufacturing Employment 1779715 1.596 1.497 0.000 11.708
Log Services Employment 1779715 2.737 1.429 0.000 12.206

Notes: This table presents summary statistics for the nightlights and SHRUG database. Panel A reports the statistics at the
District level; Panel B provides information at the Subdistrict level; Panel C and Panel D present the descriptive statistics at the
Town (urban) and Village (rural) level, respectively. Population and employment variables are expressed in natural logarithms.
Light variables represent night-time luminosity, either Sensor, blooming, & topcode fixes (adjusted) or Sensor calibration only
(unadjusted).
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